1x400GE FEC Implementation

Martin Langhammer Altera Corporation

IEEE802.3bs 400GE Task Force July, 2015

1x400GE Problem (and a fix)

(544%128)!=0

Gearbox in Time (run faster to have a constant input pattern) 128 width

Gearbox in Width (run faster to have a constant input pattern) 136 width

Requires Gearbox(es) Requires Multi-clocks

< Build Decoder with continuous input pattern

- 128 symbol width
- Direct interface to PMA and PCS
- < Now working functionally and FPGA fit

FPGA KP4 Resources (ALM \equiv 6LUT)

- < 100G KP4 : 19K ALMs
 - 4x100G:78K ALMs
 - Improved from November 2014 results
- < 400G KP4 (4 x 136 symbols): 70K ALM
- < 400G KP4 (128 symbol continuous): 70K ALM
- 1x400G continuous throughput same size as simple input styles
 - More complex algorithm and logic
 - Offset by slightly smaller datapath
- < 1x400G slightly smaller than 4x100G

FPGA Use Considerations

FPGA system implications

- Area of 1x400G smaller than 4x100G
- But 4x100G has a more decomposable routing congestion
 - Easier to fit automatically, possibly lower speed grade device
 - Time and cost consideration
- Probably not significant reason, especially consideration likely production device technology
- Routing not so much a problem inside FEC core
 - Most busses or bus groups smaller than symbol datapath
 - Bussing can be decomposed inside FEC core
 - Bigger issue moving data to/from FEC
 - May indicate similar system concern for any FEC approach (1x400G or 4x100G)

FPGA Resource Ratios

- 1x400G KP4 decoder
 fraction of likely target
 FPGAs
- Similar area roadmap from all major FPGA manufacturers

1x400GE FEC ASIC

ASIC continuous throughput simpler pattern than FPGA continuous throughput

- Largely because of 2x clock rate
- < Simpler design
 - Simpler control structure
 - Narrower datapaths
- Contract Contract
 - Shown in breakout presentation

Other

Ooes not require additional logic

- No duplicated engines
 - Although this is one way of implementing these input patterns
 - Double syndrome method will add 10%-20% decoder area
 - Still not a material consideration
- No architectural difference between ASIC and FPGA approach
 - Same gate complexity
 - FPGA has more algorithmic and control complexity
 - < 1/4 cycle vs. 1/2 cycle increment
- < Other input patterns can be accomodated
 - Moving to 96 symbol datapaths for future FPGAs

Conclusions

< 1x400G KP4 FEC can be made integration friendly

- Direct connect interface with a single clock domain
- < 400G FEC options relatively constant area
- FPGA fitting may be more difficult at 1x400G
 - But perhaps not
- Considerations Does not appear to be any material considerations between 1x400G and 4x100G FEC implementations
- We can choose FEC on what is best for standard moving forward

Thank You