Views on the FEC Architecture Decision

802.3bs - 2015-07

David Ofelt – Juniper Networks

JUNPER

Supporters

- Pete Anslow Ciena
- Thananya Baldwin Ixia
- Mark Gustlin Xilinx
- Martin Langhammer Altera
- Mike Peng Li Altera
- Jeffery Maki Juniper
- Gary Nicholl Cisco
- Mark Nowell Cisco
- Jerry Pepper Ixia
- Steve Trowbridge ALU

Introduction

- There is a difference between architecture and implementation
 - Most of the (excellent) analysis so far has been on implementation
 - Few real high-level architectural differences between the approaches
- The standard documents the architecture
 - We attempt to place as few limitations on implementation
- The physical layer represents the most cost, difficulty, and opportunity
- Systems and Chips are distinct
 - A system frequently can make an assumption about what is and isn't supported
 - A chip frequently supports multiple systems in multiple markets

Breakout

- **Breakout is extremely important!**
 - But breakout is actually more of a module topic
 - Real issue for host chips is co-existence of multiple rates
- Not sure why folks just focus on 4x100GbE & 1x400GbE
- Reality is:
 - 16x10GbE, 4x40GbE, Nx40GbE, 16x25GbE, 8x50GbE, 4x100GbE, 2x200GbE, 1x400GbE, Nx10GbE, Mx40GbE MLG1,2,3, etc, etc, (not exhaustive)
 - May also have OTN, FlexE, fibre channel, Interlaken, and/or fabric!
- A perfect choice for clocking and datapath width almost certainly doesn't exist.

Architectural differences

- Not many fundamental architectural differences between the proposals
 - What is the flexibility to reorder lanes?
 - What is the base latency?
 - Where does the FEC frame's data come from?
 - What is the FEC performance?
 - Can you can build a 400GE using 100Gb/s external FECs?

Lane Reordering & Latency

- Few restrictions on lane reordering allows for more freedom for the:
 - ASIC
 - Board
 - Module
 - Optics
- Many of the presentations gloss over the lane reordering limitations
 - Which SERDES contribute to which FEC frames?
 - In the 4x100G case- can the 100G slices be in any order?
 - Data from all SERDES needs to converge on the MAC
- Latency
 - There is a difference of ~40ns between 1x400 and 4x100
 - Less important than for slower interfaces

FEC Frame Review

ſ	10b Symbol	10b Symbol	10b Symbol				 5140b of payle 300b of parity 5440b total fra Can correct ar
						• FE da	C Encode/Decode tastream agnosti
					514 pay	0b Ioad	
5440b Frame							
					30 pa	0b irity	
			10b Symbol	10b Symbol			

oad

• KP4

ame ny 15 10b symbols

de operation is ic

Block Diagram

MAC/PCS

Where does the FEC frame's data come from?

- This is the actual architectural difference between 1x400 and 4x100 choices
- FEC encode/decode is just a block that handles N frames/second
 - The 4x100 option can be implemented by a 1x400 FEC
 - The 1x400 option can be implemented by a 4x100 FEC
 - Both can be implemented by a 3x133 FEC
 - Your personal implementation constraints determine the best approach for your design
- Real difference is how the FEC frames are built
 - Data from which SERDES comes together to form a frame?
 - How is that data interleaved to form the frame?
 - How are the frames reassembled to form the PCS stream?

FEC Performance

- FEC is the single most costly part of the MAC/PCS logic
 - Need to make the best use of the investment
 - Simplifications that make the host design easier that waste FEC performance is a very poor tradeoff.
- anslow 3bs 05 0715 shows significant benefit to using a single FEC
 - BER Headroom above 1e-13 is critical for many markets
 - May allow for relaxation for PMD parameters
 - May allow for more interesting PMD implementations

Implementation Discussion

- Several vendors already shipping 400Gb/s NPUs in 28nm
 - Main NPU forwarding & datapaths are significantly harder than the MAC/PCS
- Very good work showing microarchitectural and implementation details
 - Narrow implementation choices analyzed results generalized
 - Real design space is significantly larger ex. Channelized MAC/PCS make for different results
 - My conclusion is that there isn't a significant difference in cost or complexity between the options.
 - Magnitude of differences are what I'd expect between two different designers
- Can easily implement both options in a mid-range current-generation FPGA
 - This means ASIC implementations are trivial
 - FPGAs have ~1year process advantage but
 - Have 5-10x gate density disadvantage
 - Have a 2-4x clock frequency disadvantage
 - Speed-grade differences either nonexistent or minor

Implementation Discussion Cont.

- KP4 is a superset of KR4
 - Supporting KR4 with a KP4 FEC is essentially free
 - So no implication on breakout nor multi-rate co-existence
- We are on our 4th generation of 100GbE designs
 - All differ in many areas due to design constraints of each device
 - Clocking, partitioning, datapath sizing, etc frequently differ
 - All are a mess due to the variety of interfaces that need to be supported
 - None had "half cycle issues" that weren't rounding error
 - Clock frequency and datapath widths are often constraints rather than free variables

Implementation Discussion Cont. Cont.

- Fewer, larger things can evolve better then a collection of smaller things
- If 25GbE existed before we did the 802.3bj 100GbE interfaces...
 - Current arguments would lead to a call for 100GbE FEC to be 4x25Gb/s
 - So 400GbE FEC would then be 16x25Gb/s
- 800GbE Generation would have 32x25Gb/s
- 1.6TbE generation would have 64x25Gb/s
- Structure necessary even if 25GbE not implemented
- If instead, we define each generation as a monolithic FEC:
 - Finer-grained versions only necessary if implemented
 - Older structures fall off the end

f smaller things faces... 4x25Gb/s

Thought Process

- Silicon is (very) cheap physical layer devices aren't
 - Push as much complexity into the host chip as possible
 - Leave as much freedom as possible to the physical layer device
 - Provide for as many futures as practical
 - Use the logic provided to the fullest possibility
- Future is hard to predict & implementations vary dramatically
 - Architect in as few constraints as possible
 - An individual's view of how things must be built is likely wrong for all other parties
- First generation implementations should be possible
 - Future generations should be cheap

Summary of Choices

- Proposed Baseline : gustlin_3bs_02_0715.pdf
 - Single FEC frame distributed to all 16 SERDES
 - Good random error BER performance
 - Bit muxing between lanes
 - Lane order independence
- FOM : wang_400_01a_0114.pdf
 - Four FEC frames interleaved to subset of SERDES
 - Good burst error BER performance
 - Bit muxing between appropriate lanes
 - Some lane order limitations
- Other :
 - 4 (or 2) FEC frames interleaved and sent to all SERDES
 - Good burst error BER performance
 - FECs symbol interleaved to each PCS lane
 - Bit interleaving after initial symbol interleaving may work analysis needs to be done
 - No lane order limitations

Recommendation

- Adopt the current baseline proposal gustlin 3bs 02 0715.pdf
- This:
 - Specifies the 802.3bs FEC as a monolithic 1x400Gb/s FEC
 - Distributes a single frame to all 16 PCS lanes
- Which:
 - leads to the fewest constraints on PCS implementations
 - leads to the greatest freedom lane ordering •
 - makes the best use of the FEC "gain"
 - provides the simplest structure for dealing with future rates

Thank You!

JUNPER