TX DIFFERENTIAL PRECODER BENEFITS FOR CDAUI-8 C2C

Raj Hegde & Magesh Valliappan, Broadcom IEEE 802.3bs 400Gb/s Task Force Bonita Springs, September 2015

Contributors:

Vivek Venkatraman, Broadcom

• Supporters:

- Yasuo Hidaka, Fujitsu Laboratories of America
- Tomoyuki Arai, Socionext
- Pirooz Tooyserkani, Cisco
- Marco Mazzini, Cisco

INTRODUCTION

- DFEs are known to multiply errors in the feedback loop
 - A single random error at the DFE input can lead to an error-burst at the output
 - Probability of k consecutive errors is a function of the first tap value:
 - Tap value of 1: 0.75^k, Tap value of 0.7: 0.72^k, Tap value of 0.6: 0.62^k
- Differential Precoding limits burst error impact
- Defined in 100GBase-KP4 (94.2.2.6)

- Reduces 1-tap DFE burst error runs into 2 errors per event
 - One error at the entry and one error at the exit
 - More details and worked out example in <u>parthasarathy_01_0911</u>

For electrical sub-links in Multi-Part links with a penalty of ~0.1dB in the optical sub-link

	FLR = 6.2e-11	
	DER0	BER
Random (No DFE)	1.60E-04	8.02E-05
a=0.5	5.19E-05	5.19E-05
a=0.75	3.67E-07	7.34E-07
a=0.75 precoded	2.66E-05	2.66E-05

- When DFE tap value is high, BER is dominated by burst errors
- Precoder allows substantial BER target relaxation by breaking up long error bursts
- Almost 2 orders of magnitude improvement for DFE tap value ~ 0.7 to 1.0
- DER0 is the Detector Error Ratio as defined in COM

Simulation Setup

- Channel : Case_000004 from <u>mellitz_3bs_01_0714</u>, insertion Loss is ~19dB at 13.3GHz
- Large ASIC package model, loss is ~25dB including packages on both sides
- Fractionally spaced Feed-Forward Equalizer (FS-FFE) with large number of taps
- Decision feedback equalizer with constraints on tap amplitudes
- Result : Higher performing DFE tap weights are in the range of 0.5 to 0.75
- The "optimal" solution for a product depends on implementation considerations also

- Allows more flexible EQ choices and power/performance tradeoffs for RX
- Bypass-able option improves interoperability between designs optimized for different criteria
- FEC code word interleaving to handle other sources of correlated errors like
 - Shared Power supply noise
 - Random phase noise from a common VCO
 - EMI and impulse noise events

Provides lane-level mitigation against lane-level DFE generated burst errors

 Lane-level protection allows extension to other PAM4 AUI configurations where interleaving multiple FEC codewords may not be feasible

- Recommend that CDAUI8 C2C TX PMA include a bypass-able TX differential precoder
 - Defined in 100GBase-KP4 (94.2.2.6)
- Implementation is inexpensive & low risk small digital logic
- Does not require new programming pathways
 - Adds 1 control bit to the same interface as CDAUI8 c2c's TXFIR
- No impact to an RX that doesn't need it