Considerations for oscilloscope measurements of electrical and optical PAM4 signals

Pavel Zivny, Tektronix ; Contributors: Greg LeCheminant, Keysight Technologies; Jan Peters Weem, Tektronix

V1.0

2015/09 prz

Considerations for oscilloscope measurements of electrical and optical PAM4 signals

- Sampling oscilloscopes: modes of operation with respective features/limitations
- Real-time oscilloscopes: modes of operation with respective features/limitations

Oscilloscopes: signal constraints vs. depth of analysis: basic eye capture on Sampling*

Two acquisition types are possible on a *sampling** oscilloscope:

- 1. Capture with no decomposition of statistical properties e.g. capture of the eye diagram.
 - No need for Pattern Trigger (Pattern Lock);
 - No possibility of SW DSP (no SW equalization possible).
 - Works on any pattern or traffic, incl. PRBS31
 - BW controllable as a 4th order Bessel-Thomson from ~40% to 100% of BW_{MAX}; this is a valid filter for all components of the signal

Oscilloscopes: signal constraints vs. depth of analysis: pattern capture on Sampling

... two acquisition types are possible on a *sampling* oscilloscope:

- 2. Capture with separation and decomposition of statistical properties
 - Repetitive pattern and Pattern Lock or (Pattern Trigger) are necessary
 - Realistic pattern length: PRBS15 in several minutes
 (so ok for design, for manufacturing, shorter would be better)
 Note that for statistical analysis, many passes of the pattern must be analyzed –
 capture of just repeat of pattern won't allow collection of statistical behavior
 - Jitter components decomposed and measured (RJ, DDJ, RN, DDN, ...)*
 - HW filter as in 1. remains
 - Correlated** information (the waveform w/o random noise/jitter) has correct spectrum and can be exported as a waveform; can also be equalized in a SW CTLE/FFE/DFE etc.
 - Uncorrelated information (RJ, RN, PJ, PN, etc.) known only in distribution, not as a true time-step vector. Spectral shaping based on assumptions (e.g. RN is white, thus will be limited in certain way by e.g. an CTLE).

Tektroni

*Random Jitter, Data Dependent Jitter, etc. **correlated to the pattern

Basic facts for Sampling Oscilloscopes

- Excellent noise performance (e.g. 600 uV_{RMS} for 33 GHz of BW)
- Excellent bandwidth at low cost (BW>80 GHz)
- Optical plug-ins available for most signals' needs
- Trigger signal necessary (a CR, or a Clock e.g. from the signal source)
- Clock recovery behavior (PLL Loop BW, etc.) in HW of the clock recovery (CR)

Oscilloscopes: signal constraints vs. depth of analysis: pattern capture on Real Time

Two acquisition types are possible on a real-time oscilloscope:

- 3. Capture with no decomposition of statistical properties
 - e.g. capture a segment of the pattern, or 1 repeat of it.
 - Works on any pattern or traffic, incl. PRBS31
 - Jitter / Noise decomposition not possible (not enough data for good analysis from 1 repeat of a waveform)
 - BW controllable fully; DSP processing (SW equalizers) fully available

Oscilloscopes: signal constraints vs. depth of analysis: pattern capture on Real Time

... two acquisition types are possible on a real-time oscilloscope:

- 4. Capture with decomposition of signal components
 - capture many (e.g. 100) repeats of the pattern
 - Repetitive pattern with length ca. < PRBS21 is necessary*
 - For statistical analysis a repetitive waveform that can be digitized completely about 100 times is highly desirable: Jitter components decomposed and measured (RJ, DDJ, RN, DDN, ...)
 - BW controllable fully; DSP processing (SW equalizers) fully available
 - Noise performance

*necessary for high quality of result; random data partially analyzed

Equalization capabilities of oscilloscopes

- Two acquisition modes for sampling oscilloscopes:
 - Basic Eye Diagrams:
 - No restrictions on pattern length (includes live traffic)
 - Simple clock triggering
 - Limited analysis of statistical properties
 - No post processing (no SW equalization)
 - Pattern Locked analysis
 - Requires repetitive pattern and Pattern Trigger
 - More accurate analysis of signal properties
 - Realistic pattern length: PRBS15 is viable, test time driven by pattern length
 - Allows variety of SW equalization tools
- Real Time oscilloscopes
 - Can acquire and process any waveform without pattern length and triggering restrictions
 - For statistical analysis and equalization, repetitive waveforms with multiple observations highly desirable

Basic facts for Real-Time Oscilloscopes

- Good noise performance (e.g. 1200 uV_{RMS} for 33 GHz of BW)
- Trigger signal not needed
- Clock recovery available in SW (highly flexible)

Measurement bandwidth requirements for electrical and optical signals

 An example of proposal for bandwith required for oscilloscope measurements of PAM4 signals follows.
 The goal of proposal is to receive feedback; not final numbers

Measurement bandwidth requirements for electrical and optical signals

- What changes are needed for PAM4 vs. NRZ signaling?
- Current requirements:
 - 120D.3.1 CDAUI-8 transmitter characteristics
 A test system with a fourth-order Bessel-Thomson low-pass response with 33 GHz 3 dB bandwidth is to be used for all transmitter signal measurements, unless otherwise specified.
 - Several other places in Clause 120 list the same requirement
- NRZ optical signals historically measured 4th Order Bessel-Thomson response with electrical bandwidth at 0.75 * Symbol_Rate, (effective optical 3dB BW ~ 1.02 * Symbol_Rate).

NRZ:			
Symbol rate	25.78125[GBd]		
today's electrical B-T filter	33[GHz]		
optical ref. receiver (defined at 0.75x SRf)	19.33594[GHz]		
Equivalent optical BW	26.29688 [GHz]		

What is the proper bandwidth for PAM4 waveform analysis optical signals

- What are the essential signal properties that must be observed to provide confidence that a signal will yield an operable link
- What is the proper observation BW to measure those properties?
- Is the 33 GHz (3 dB B-T bandwidth) appropriate for electrical signals?
- What Optical Reference Receiver (ORR) bandwidth should be used for PAM4 NRZ at
 - 26.5625 GBd
 - 54.29 GBd
- What is the measure of goodness of a reference receiver? (for either electrical or optical)

Recommend continued use of Bessel-Thomson design

- Best time domain response (constant group delay in pass band yields best flatness of step response)
- Consider a bandwidth that yields comparable vertical eye closure to that of legacy PAM2 NRZ
- This is a general recommendation applicable to an eye mask test or other measurements.
 - Acknowledging that measurements are still being defined, with a possibility of closed eyes
- Can existing optical reference receivers be leveraged for 802.3 bs?
 - 802.3ba, 802.3 bm: 19.34 GHz
 - 32xFibre Channel : 21 GHz

The impact of the measurement bandwidth on the PAM4 NRZ signal: test signal

- A "very fast" signal (rise-time = 0.1 * UI) representing an extremely fast DUT is filtered in simulation through several 4th-order Bessel-Thompson filters
- The very fast signal eye diagram:

The evaluation of the impact of the test equipment

- The eye diagrams exhibit horizontal eye closure and vertical eye closure
- Example: for test equipment with BW of 0.6 * Symbol_rate_frequency (this is optical BW at 0.75*Sym.r.f) the measured signal is significantly impacted in both the horizontal eye closure and vertical eye closure
- Horizontal eye closure not comparable to that of PAM2 NRZ, so …
- Using vertical eye closure

Comparison of the relative eye closure of PAM2 and PAM4 NRZ vs. relative Reference Receiver Bandwidth

• Vertical eye closure is worse on PAM4 than on PAM2

Filter BW as a fraction of Symbol_rate_frequency

Tentative proposal

 If there are no other constrains on the bandwidth of the oscilloscope used for measuring of PAM4 signals, here is an example table of results:

PAM4 NRZ:		PAM2 NRZ: (legacy)	
Symbol rate	26 [GHz]	Symbol rate	25.78125 [GHz]
electrical B-T filter	37.95 [GHz]	electrical B-T filter	33[GHz]
Optical filter (0.75x)	22.425 [GHz]	Optical filter (0.75x)	19.33594 [GHz]

We propse to finalize the methodology and the numbers in both the SM ad hoc and in the Electrical ad hoc

End.

Thank you.

