
Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119. Physical Coding Sublayer (PCS) for 64B/66B, type 400GBASE-R

119.1 Overview

119.1.1 Scope

This clause specifies the Physical Coding Sublayer (PCS) that is used for the Physical Layer implementation
known as 400GBASE-R. The 400GBASE-R PCS is a sublayer of the 400 Gb/s PHYs listed in Table 116–1.
The term 400GBASE-R is used when referring generally to Physical Layers using the PCS defined in this
clause.

400GBASE-R is based on a 64B/66B code. The 64B/66B code supports transmission of data and control
characters. The 64B/66B code is then transcoded to 256B/257B encoding to reduce the overhead and make
room for Forward Error Correction (FEC). The 256B/257B encoded data is then FEC encoded before being
transmitted. Data distribution is introduced to support multiple lanes in the Physical Layer. Part of the
distribution includes the periodic insertion of an alignment marker, which allows the receive PCS to align
data from multiple lanes.

119.1.2 Relationship of 400GBASE-R to other standards

Figure 119–1 depicts the relationship of the 400GBASE-R sublayer (shown shaded), the Ethernet MAC and
Reconciliation Sublayers, and the higher layers.

This clause borrows heavily from Clause 82 and Clause 91. 64B/66B encoding is reused with the addition of
transcoding, and RS-FEC.

119.1.3 Physical Coding Sublayer (PCS)

The PCS service interface is the Media Independent Interface (CDMII), which is defined in Clause 116. The
CDMII provides a uniform interface to the Reconciliation Sublayer for all 400 Gb/s PHY implementations.

The 400GBASE-R PCS provides all services required by the CDMII, including the following:

a) Encoding (decoding) of eight CDMII data octets to (from) 66-bit blocks (64B/66B).

b) Transcoding from 66-bit blocks to 257-bit blocks

c) Reed-Solomon encoding (decoding) the 257-bit blocks

d) Transferring encoded data to (from) the PMA.
e) Compensation for any rate differences caused by the insertion or deletion of alignment markers or

due to any rate difference between the CDMII and PMA through the insertion or deletion of idle
control characters.

f) Determining when a functional link has been established and informing the management entity via
the MDIO when the PHY is ready for use.

119.1.4 Inter-sublayer interfaces

The upper interface of the PCS may connect to the Reconciliation Sublayer through the CDMII. The lower
interface of the PCS connects to the PMA sublayer to support a PMD. The 400GBASE-R PCS has a
nominal rate at the PMA service interface of 26.5625 Gtransfers/s on each of 16 PCS lane, which provides
capacity for the MAC data rate of 400 Gb/s.

It is important to note that, while this specification defines interfaces in terms of bits, octets, and frames,
implementations may choose other data-path widths for implementation convenience.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

80

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.1.4.1 PCS service interface (CDMII)

The PCS service interface allows the 400GBASE-R PCS to transfer information to and from a PCS client.
The PCS client is the Reconciliation Sublayer. The PCS Service Interface is precisely defined as the Media
Independent Interface (CDMII) in Clause 116.

119.1.4.2 Physical Medium Attachment (PMA) service interface

The PMA service interface for the PCS is described in an abstract manner and does not imply any particular
implementation. The PMA Service Interface supports the exchange of encoded data between the PCS and
PMA sublayer. The PMA service interface is defined in 120.3 and is an instance of the inter-sublayer service
interface definition in 116.3.

Figure 119–1—400GBASE-R PCS relationship to the ISO/IEC Open Systems
Interconnection (OSI) reference model and IEEE 802.3 Ethernet model

ETHERNET
LAYERS

LLC OR OTHER MAC CLIENT

MAC

HIGHER LAYERS

MAC CONTROL (OPTIONAL)

PRESENTATION

APPLICATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

OSI
REFERENCE

MODEL
LAYERS

PCS = PHYSICAL CODING SUBLAYER
PHY = PHYSICAL LAYER DEVICE
PMA = PHYSICAL MEDIUM ATTACHMENT
PMD = PHYSICAL MEDIUM DEPENDENT

RECONCILIATION

PMD

400GBASE-R PCS

400GBASE-R

PHY

MEDIUM

MDI

CDMII

PMA

CDMII = 400 Gb/s MEDIA INDEPENDENT INTERFACE
LLC = LOGICAL LINK CONTROL
MAC = MEDIA ACCESS CONTROL
MDI = MEDIUM DEPENDENT INTERFACE
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

81

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.1.5 Functional block diagram

Figure 119–2 provides a functional block diagram of the 400GBASE-R PCS.

PCS

PMA sublayer

RXD<63:0>
RXC<7:0>
RX_CLK

64B/66B Encode

Figure 119–2—Functional block diagram

TXD<63:0>
TXC<7:0>
TX_CLK

Alignment lock
Lane deskew

Descramble

Reverse Transcode

BER

monitor

PMA:IS_SIGNAL.indication

Scramble

Alignment
insertion

Lane reorder
and de-interleave

Alignment
removal

PMA:IS_UNITDATA_i.request

PMA:IS_UNITDATA_i.indication

FEC Decode

CDMII

(i = 0 to 15)
(i = 0 to 15)

256B/257B Transcode

Pre-FEC Distribution

Distribution and

64B/66B Decode

Interleave

FEC Encode
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

82

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.2 Physical Coding Sublayer (PCS)

119.2.1 Functions within the PCS

The 400GBASE-R PCS is composed of the PCS Transmit and PCS Receive processes. The PCS shields the
Reconciliation Sublayer (and MAC) from the specific nature of the underlying channel. The PCS transmit
channel and receive channel can each operate in normal mode or test-pattern mode.

When communicating with the CDMII, the PCS uses an eight octet-wide, synchronous data path, with
packet delineation being provided by transmit control signals (TXC<n> = 1) and receive control signals
(RXC<n> = 1). When communicating with the PMA, the 400GBASE-R PCS uses 16 encoded bit streams.
The PMA sublayer operates independently of block and packet boundaries. The PCS provides the functions
necessary to map packets between the CDMII format and the PMA service interface format.

Note that these serial streams originate from a common clock in each direction, but may vary in phase and
skew dynamically.

When the transmit channel is in normal mode, the PCS Transmit process continuously generates 66-bit
blocks based upon the TXD <63:0> and TXC <7:0> signals on the CDMII. The 66-bit blocks are transcoded
to 257-bit blocks to reduce the line coding overhead. The transcoded blocks are then scrambled to control
clock content and baseline wander. Alignment markers are periodically added to the data stream. The data
stream is distributed to two FEC codewords and the stream is then FEC encoded to control errors. TheTwo
FEC encodedcodewords are then interleaved before data isdata is then distributed to individual PCS lanes.

[Editor’s note: How FEC codewords are distributed is TBD, and if multiple FEC codewords are inter-
leaved before distribution is TBD.]

Transmit data-units are sent to the service interface via the PMA:IS_UNITDATA_i.request primitive.

When the transmit channel is in test-pattern mode, a test pattern is packed into the transmit data-units that
are sent to the PMA service interface via the PMA:IS_UNITDATA_i.request primitive.

When the receive channel is in normal or test-pattern mode, the PCS Synchronization process continuously
monitors PMA:IS_SIGNAL.indication(SIGNAL_OK). When SIGNAL_OK indicates OK, then the PCS
synchronization process accepts data-units via the PMA:IS_UNITDATA_i.indication primitive. It attains
alignment marker lock based on the repeated AM0 value on each one of the PCS lanes. After alignment
markers are found on all PCS lanes, the individual PCS lanes are identified using TBD. The PCS lanes can
then be reordered and deskewed. Note that a particular transmit PCS lane can be received on any receive
lane of the service interface due to the Skew and multiplexing that occurs in the path.

The PCS deskew process deskews and aligns the individual PCS lanes, removes the alignment markers,
forms a single stream, and sets the align_status flag to indicate whether the PCS has obtained alignment. The
PCS then processes the FEC blocks, transcodes the data back to 64B/66B, descrambles the data and then
decodes the 64B/66B encoded data. The PCS deskew process deskews, aligns and reorders the individual
PCS lanes, forms a single stream, and sets the align_status flag to indicate whether the PCS has obtained
alignment. The PCS then de-interleaves and processes the FEC codewords. Next the PCS removes
alignment markers, descrambles the data, transcodes the data back to 64B/66B and then decodes the
64B/66B encoded data.

[Editor’s note: Multiple FEC codewords might be interleaved on transmit, so the receive processing in
this area is TBD. BER monitoring is TBD.]

When the receive channel is in test-pattern mode, the BER monitor process may be disabled. The Receive
process will be held in the RX_INIT state. The received bits will be compared to the test pattern and errors
counted.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

83

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The PCS shall provide transmit test-pattern mode for the scrambled idle pattern (see 119.2.4.9), and shall
provide receive test-pattern mode for the scrambled idle pattern (see 119.2.5.8). Test-pattern mode is
activated separately for transmit and receive. The PCS shall support transmit test-pattern mode and receive
test-pattern mode operating simultaneously so as to support loopback testing.

119.2.2 Use of blocks

The PCS maps CDMII signals into 66-bit blocks, and vice versa, using a 64B/66B coding scheme. The PCS
functions ENCODE and DECODE generate, manipulate, and interpret blocks as defined in 119.2.3.

119.2.3 64B/66B code

The PCS uses 64B66B coding to support transmission of control and data characters. For the 400GBASE-R
implementation, this code is further modified by the transcoding and FEC that occurs in this PCS.

119.2.3.1 Notation conventions

For values shown as binary, the leftmost bit is the first transmitted bit.

64B/66B encodes 8 data octets or control characters into a block. Blocks containing control characters also
contain a block type field. Data octets are labeled D0 to D7. The control characters /I/ and /E/ are labeled C0
to C7. The control characters, /Q/ and /Fsig/, for ordered sets are labeled as O0 since they are only valid on
the first octet of the CDMII. The control character for start is labeled as S0 for the same reason. The control
character for terminate is labeled as T0 to T7. The four trailing zero data octets in ordered sets are labeled as
Z4 to Z7.

One CDMII transfer provides eight characters that are encoded into one 66-bit transmission block. The
subscript in the above labels indicates the position of the character in the eight characters from the CDMII
transfer.

Contents of block type fields, data octets, and control characters are shown as hexadecimal values. The LSB
of the hexadecimal value represents the first transmitted bit. For instance, the block type field 0x1E is sent
from left to right as 01111000. The bits of a transmitted or received block are labeled TxB<65:0> and
RxB<65:0>, respectively, where TxB<0> and RxB<0> represent the first transmitted bit. The value of the
sync header is shown as a binary value. Binary values are shown with the first transmitted bit (the LSB) on
the left.

119.2.3.2 64B/66B Block structure

Blocks consist of 66 bits. The first two bits of a block are the synchronization header (sync header). Blocks
are either data blocks or control blocks. The sync header is 01 for data blocks and 10 for control blocks.
Thus, there is always a transition between the first two bits of a block. The remainder of the block contains
the payload.

Data blocks contain eight data characters. Control blocks begin with an 8-bit block type field that indicates
the format of the remainder of the block. For control blocks containing a Start, Terminate character, or
ordered set, that character is implied by the block type field. Other control characters are encoded in a 7-bit
control code. Each control block encodes eight characters.

The format of the blocks is as shown in Figure 119–3. In the figure, the column labeled Input Data shows, in
abbreviated form, the eight characters used to create the 66-bit block. These characters are either data
characters or control characters and, when transferred across the CDMII, the corresponding TXC or RXC bit
is set accordingly. Within the Input Data column, D0 through D7 are data octets and are transferred with the
corresponding TXC or RXC bit set to zero. All other characters are control characters and are transferred
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

84

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
with the corresponding TXC or RXC bit set to one. The single bit fields (thin rectangles with no label in the
figure) are sent as zero and ignored upon receipt.

All unused values of block type field are invalid; they shall not be transmitted and shall be considered an
error if received.

119.2.3.3 Control codes

The same set of control characters are supported by the CDMII and the PCS. The representations of the
control characters are the control codes. The CDMII encodes a control character into an octet (an eight bit
value). The 400GBASE-R PCS encodes the start and terminate control characters implicitly by the block
type field. The 400GBASE-R PCS encodes the ordered set control codes using the block type field. The
400GBASE-R PCS encodes each of the other control characters into a 7-bit control code.

The control characters and their mappings to 400GBASE-R control codes and CDMII control codes are
specified in Table 82-1. All CDMII and 400GBASE-R control code values that do not appear in the table
shall not be transmitted and shall be considered an error if received. The ability to transmit or receive Low
Power Idle (LPI) is required for PHYs that support EEE (see Clause 78). If EEE has not been negotiated,
LPI shall not be transmitted and shall be treated as an error if received.

119.2.3.4 Valid and invalid blocks

O0 D1 D2 D3 Z4 Z5 Z6 Z7

Figure 119–3—64B/66B block formats

C0 C1 C2 C3 C4 C5 C6 C7 10 0x1E

D2 D3 D4 D5 D6 D7

Control Block Formats:
Block Type
Field

0xFF

0xE1

0xB4

0xAA

0x99

0x87

0x78

0xCC

0xD2

10

10

10

10

10

10

10

10

10

D0 D1 D2 D3 D4 D5 D6 T7

D0 D1 D2 D3 D4 D5 T6 C7

D0 D1 D2 D3 D4 T5 C6 C7

D0 D1 D2 D3 T4 C5 C6 C7

D0 D1 D2 T3 C4 C5 C6 C7

D0 D1 T2 C3 C4 C5 C6 C7

D0 T1 C2 C3 C4 C5 C6 C7

T0 C1 C2 C3 C4 C5 C6 C7

S0 D1 D2 D3 D4 D5 D6 D7 D1

D0

D0

D0

D0

D0

D0

D0

C0

D1

D1

D1

D1

D1

D1

C1

C1

D2

C2

D2

D2

D2

D2

C2

C2

D3

D3

D3

D3

C3

C3

C3

C3

D4

D4

D4

C4

C4

C4

C4

C4

D5

D5

C5

C5

C5

C5

C5

C5

D6

C6

C6

C6

C6

C6

C6

C6

C7

C7

C7

C7

C7

C7

C7

C7

D2

D2 D30x4B10 D1

Input Data S
y
n
c

D0 D1 D2 D3 D4 D5 D6 D7 01 D0 D1 D2 D3 D4 D5 D6 D7

Data Block Format:

Block Payload

0 65Bit Position: 1 2

O0 0x000_0000

WARNING

Any changes to the coding that affects the transcoding may impact ITU payloads.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

85

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The valid and invalid blocks are identical to those in 82.2.3.5 with the exception that it is a CDMII data
stream instead of XLGMII/CGMII.

119.2.3.5 Idle (/I/)

Idle control characters are identical to those in 82.2.3.6.

119.2.3.6 Start (/S/)

Start control characters are identical to those in 82.2.3.7.

119.2.3.7 Terminate (/T/)

The terminate control characteristics are identical to those in 82.2.3.8.

119.2.3.8 Ordered set (/O/)

Ordered sets are specified identically as in 82.2.3.9.

119.2.3.9 Error (/E/)

In both the 64B/66B encoder and decoder, the /E/ is generated whenever an /E/ is detected. The /E/ is also
generated when invalid blocks are detected. The /E/ allows the PCS to propagate detected errors. See
R_TYPE and T_TYPE function definitions in 119.2.6.2.3 for further information.

119.2.4 Transmit

119.2.4.1 Transmit process

The transmit process generates 66-bit blocks based upon the TXD<63:0> and TXC<7:0> signals received
from the CDMII. One CDMII data transfer is encoded into one 66-bit block. The transmit process must
delete idle control characters or sequence ordered sets to accommodate the transmission of alignment
markers. If the PCS transmit process spans multiple clock domains, it may also perform clock rate
compensation via the deletion of idle control characters or sequence ordered sets or the insertion of idle
control characters.

There are sufficient idle control characters to delete in order to make room for alignment markers, in
addition to handling clock compensation. Idle control characters or sequence ordered sets are removed, if
necessary, to accommodate the insertion of the 120-bit alignment markers. See 119.2.4.4 for more details.

The transmit process generates blocks as specified in the transmit process state diagram. The contents of
each block are contained in a vector tx_coded<65:0>, which is passed to the transcoder. tx_coded<1:0>
contains the sync header and the remainder of the bits contain the block payload.

119.2.4.2 64B/66B to 256B/257B transcoder

The transcoder constructs a 257-bit block, tx_xcoded<256:0>, from a group of four 66-bit blocks, tx_cod-
ed_j<65:0> where j=0 to 3. For each group of four 66-bit blocks, j=3 corresponds to the most recently
received block. Bit 0 in each 66-bit block is the first bit received and corresponds to the first bit of the syn-
chronization header.

If for all j=0 to 3, tx_coded_j<0>=0 and tx_coded_j<1>=1, tx_xcoded<256:0> shall be constructed as
follows:
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

86

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
a) tx_xcoded<0> = 1
b) tx_xcoded<(64j+64):(64j+1)> = tx_coded_j<65:2> for j=0 to 3

If for all j=0 to 3, tx_coded_j<0>  tx_coded_j<1> (valid synchronization header) and for any j=0 to 3,
tx_coded_j<0>=1 and tx_coded_j<1>=0, tx_xcoded<256:0> shall be constructed as follows:

a1) tx_xcoded<0> = 0
b1) tx_xcoded<j+1> = tx_coded_j<1> for j=0 to 3
c1) Let c be the smallest value of j such that tx_coded_c<0>=1. In other words, tx_coded_c is the first

66-bit control block that was received in the current group of four blocks.
d1) Let tx_payloads<(64j+63):64j> = tx_coded_j<65:2> for j=0 to 3
e1) Omit tx_coded_c<9:6>, which is the second nibble (based on transmission order) of the block type

field for tx_coded_c, from tx_xcoded per the following expressions.
tx_xcoded<(64c+8):5> = tx_payloads<(64c+3):0>
tx_xcoded<256:(64c+9)> = tx_payloads<255:(64c+8)>

If for any j=0 to 3, tx_coded_j<0> = tx_coded_j<1> (invalid synchronization header), tx_xcoded<256:0>
shall be constructed as follows:

a2) tx_xcoded<0> = 0
b2) tx_xcoded<j+1> = 1 for j=0 to 3
c2) Let tx_payloads<(64j+63):64j> = tx_coded_j<65:2> for j=0 to 3
d2) Omit the second nibble (based on transmission order) of tx_coded_0 per the following expressions.

tx_xcoded<8:5> = tx_payloads<3:0>
tx_xcoded<256:9> = tx_payloads<255:8>

Several examples of the construction of tx_xcoded<256:0> are shown in Figure 119–4. In Figure 119–4, d_j
indicates the jth 66-bit block contains only data octets, c_j indicates the jth 66-bit block contains one or more
control characters, f_j denotes the first nibble of the block type field for 66-bit block j, and s_j denotes the
second nibble of the block type field for 66-bit block j.

For each 257-bit block, bit 0 shall be the first bit transmitted.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

87

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
.

01 d_0

0 65

tx_coded_0
2

01 d_1 01 d_2 01 d_3

0 65

tx_coded_1
2 0 65

tx_coded_2
2 0 65

tx_coded_3
2

d_3d_2d_1d_01

0 256

tx_xcoded

Figure 119–4—Examples of the construction of tx_xcoded

01

0 65

tx_coded_0

2

01 01 d_2 10

0

tx_coded_1

0 65

tx_coded_2

2 0 65

tx_coded_3

2

d_20

0 256

tx_xcoded

10

0 65

tx_coded_0

2

10 10 10

0 65

tx_coded_1

2 0 65

tx_coded_2

2 0 65

tx_coded_3

2

0

0 256

tx_xcoded

Example 1: All data blocks

Example 3: Three data blocks followed by a control block

Example 4: All control blocks

Example 2: Control block followed by three data blocks

1110

10 c_0

0 65

tx_coded_0

2

01 d_1 01 d_2 01 d_3

0 65

tx_coded_1

2 0 65

tx_coded_2

2 0 65

tx_coded_3

2

d_3d_2d_10

0 256

tx_xcoded

s_0f_0

c_0f_00111

c_3s_3f_3d_0

d_0 c_3f_3

c_0s_0f_0 c_1s_1f_1 c_2s_2f_2 c_3s_3f_3

c_3s_3f_3c_2s_2f_2c_1s_1f_1c_0f_00000

6 10

6 10

6 10 6 10 6 10 6 10

d_1

d_1

652
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

88

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.2.4.3 Scrambler

The payload, tx_xcoded<256:0>, is scrambled with a self-synchronizing scrambler to generate
tx_scrambled<256:0>. The scrambler is identical to the scrambler used in Clause 49, see 49.2.6 for the
definition of the scrambler.

119.2.4.4 Alignment marker insertion

In order to support deskew and reordering of individual PCS lanes at the receive PCS, alignment markers are
added periodically to each PCS lane. Each alignment marker is defined as a unique 120-bit block. The
alignment markers are inserted as a group, aligned to the beginning of a FEC block, and interrupt any data
transfer that is already in progress. A 136-bit pad is appended to the alignment markers to yield the
equivalent of eight 257-bit blocks. The pad bits shall be set to a free running PRBS9 pattern, defined by the
polynomial x9 + x5 + 1. The pad shall not be checked on receive.

Room for the alignment markers is created by periodically deleting idle control characters from the CDMII
data stream. Special properties of the alignment markers are that they are not scrambled, do not conform to
the encoding rules as outlined in Figure 119–3 and are not transcoded. This is possible because the
alignment markers are added after encoding, transcoding, and scrambling, and removed before
descrambling, transcoding, and 64B/66B decoding. The alignment markers are not scrambled in order to
allow the receiver to find the alignment markers, deskew the PCS lanes, and reassemble the aggregate
stream before descrambling is performed. The alignment markers themselves are formed from a known
pattern that is defined to be balanced and with many transitions and therefore scrambling is not necessary.
The group of alignment markers shall be inserted once every 161920 257-bit blocks, one alignment marker
per PCS lane. Alignment marker mapping and repetition rate are shown in Figure 119–6 and Figure 119–7.

The format of the alignment markers is shown in Figure 119–5. There is a portion that is common across all
alignment markers, and then a unique portion per PCS lane.

The content of the alignment markers shall be as shown in Table 119–1. The contents depend on the PCS
lane number and the octet number, with the first 64 bits being identical across all alignment markers to allow
for common synchronization across lanes. What is shown in Table 119–1 is how the alignment markers
appear on the PCS lanes. In the FEC codewords, they appear in a permuted format due to the codeword
interleaving that occurs before FEC codewords are distributed to PCS lanes.

As an example, the lane marker for 400GBASE-R lane number 0 is sent as (left most bit sent first):

10000011 00010110 10000100 00101111 01111100 01111001 01111011 11010000 TBD

[Editor’s note: Show bit pattern example here after AMs are defined.]

Common Marker

Bit Position: 0

Figure 119–5—Alignment marker format

Unique Marker

63 64 119
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

89

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 119–1—400GBASE-R Alignment marker encodings

PCS
lane

number

Encodinga

aEach octet is transmitted LSB to MSB.

{M0, M1, M2, BIP3, M4, M5, M6, BIP7}

0 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

1 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

2 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

3 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

4 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

5 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

6 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

7 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

8 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

9 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

10 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

11 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

12 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

13 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

14 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD

15 0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, next 56b are TBD
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

90

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119

Figure 119–6—Alignment marker Mapping to PCS lanes

0

am_0

1 2 3 4 5 6 7 8 9 10 11 12

PCS
lane, i

Reed-Solomon symbol index, k (10-bit symbols)

am_1

0

1

am_2

am_3

2

3

am_4

am_5

4

5

am_6

am_7

6

7

am_8

am_9

8

9

am_10

am_11

10

11

am_12

am_13

12

13

am_14

am_15

14

15

= 136-bit pad

0

Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

91

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.2.4.5 Pre-FEC Distribution

Two Reed-Solomon FEC codewords are interleaved before data is distributed to the PCS lanes to improve
error correction capability. Data is distributed to those two FEC codewords by performing a 10 b round rob-
ing distribution of the tx_scrambled<256:0> data as follows.

For all j=0 to 39, tx_temp<10279:0> shall be constructed as follows:

tx_temp<(256+257j):(0+257j)> = tx_scrambled_j<256:0>

For all i=0 to 513, tx_prefec0<5139:0> and tx_prefec1<5139:0> shall be constructed as follows:

tx_prefec0<(9+10i):(0+10i)> = tx_temp<(9+20i):(0+20i)>

tx_prefec1<(9+10i):(0+10i)> = tx_temp<(19+20i):(10+20i)>

119.2.4.6 Reed-Solomon encoder

The PCS sublayer employs a Reed-Solomon code operating over the Galois Field GF(210) where the symbol
size is 10 bits. The encoder processes k message symbols to generate 2t parity symbols, which are then
appended to the message to produce a codeword of n=k+2t symbols. For the purposes of this clause, a partic-
ular Reed-Solomon code is denoted RS(n,k).

The PCS sublayer shall implement RS(544,514). Each k-symbol message corresponds to 20The PCS inter-
leaves two FEC codewords, therefore each k-symbol message corresponds to one half of a group of 40 inter-
leaved 257-bit blocks produced by the transcoder (with the exception of the alignment marker blocks). Each
code is based on the generating polynomial given by Equation (119–1).

Figure 119–7—Alignment marker insertion period

am_0

am_1

am_2

am_3

am_4

am_5

am_6

am_7

am_8

am_9

am_10

am_11

am_12

am_13

am_14

am_15

am_0

am_1

am_2

am_3

am_4

am_5

am_6

am_7

am_8

am_9

am_10

am_11

am_12

am_13

am_14

am_15

161920 257-bit blocks between AM insertions
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

92

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
g x  x j– 
j 0=

2 t 1–

 g2t x
2t g2 t 1– x2 t 1–  g1 x g+ + + + 0= =

m x  mk 1– x
n 1–

mk 2– x
n 2–  m1 x

2t 1+
m0 x

2t
+ + + +=

p x  p2 t 1– x2t 1– p2t 2– x2t 2–  p1 x p0+ + + +=

(119–1)

In Equation (119–1),  is a primitive element of the finite field defined by the polynomial x10+x3+1.

Equation (119–2) defines the message polynomial m(x) whose coefficients are the message symbols mk–1 to
m0.

(119–2)

Each message symbol mi is the bit vector , which is identified with the element
 of the finite field. The message symbols are composed of the bits of

the transcoded blocks tx_scrambled (including a group of alignment markers when appropriate) such that bit
0 of the first transcoded block in the message is bit 0 of mk–1 and bit 256 of the last transcoded block in the
messageof the variable tx_prefec0 for codeword0 and tx_prefec1 for codeword1 (including a group of
alignment markers when appropriate) such that bit 0 of tx_prefec0 or tx_prefec1 as appropriate, is bit 0 of
mk–1 and bit 5139 of tx_prefec0 or tx_prefec1 as appropriate, is bit 9 of m0. The first symbol input to the
encoder is mk–1.

Equation (119–3) defines the parity polynomial p(x) whose coefficients are the parity symbols p2t–1 to p0.

(119–3)

The parity polynomial is the remainder from the division of m(x) by g(x). This may be computed using the
shift register implementation illustrated in Figure 119–8. The outputs of the delay elements are initialized to
zero prior to the computation of the parity for a given message. After the last message symbol, m0, is
processed by the encoder, the outputs of the delay elements are the parity symbols for that message.

The codeword polynomial c(x) is then the sum of m(x) and p(x) where the coefficient of the highest power of
x, cn–1 = mk–1 is transmitted first and the coefficient of the lowest power of x, c0 = p0 is transmitted last. The
first bit transmitted from each symbol is bit 0

For all j=0 to 5439, variable tx_postfec0<5439:0> and tx_postfec1<5439:0> shall be constructed as follows:

tx_postfec0<j> = c<5139-j>

tx_postfec1<j> = c<5139-j>

mi 9 mi 8  mi 1 mi 0    
mi 9 

9
mi 8 

8  mi 1  mi 0+ + + +
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

93

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
.

The coefficients of the generator polynomial for each code are presented in Table 119–2. Example code-
words for each code are provided in Annex 91A.

119.2.4.7 Symbol distribution

[Editor’s note: How data is distributed to PCS lanes is TBD. It is possible that multiple FEC frames will

Table 119–2—Coefficients of the generator polynomial gi (decimal)

i RS(544,514) i RS(544,514) i RS(544,514)

0 523 11 883 22 565

1 834 12 503 23 108

2 128 13 942 24 1

3 158 14 385 25 552

4 185 15 495 26 230

5 127 16 720 27 187

6 392 17 94 28 552

7 193 18 132 29 575

8 610 19 593 30 1

9 788 20 249

10 361 21 282

p2t–1p2t–2

g2t

p1p0

g2t–1g2t–2g2g1g0

pi

= GF add

= GF multiply

= symbol delay element, holds a 10-bit symbol

Input
mk–1, mk–2, ...

Output
cn–1, cn–2, ...

Figure 119–8—Reed-Solomon encoder functional model

Switch
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

94

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
be interleaved before distribution. The distribution process is shown in Figure 119–9.]

Once the data has been FEC encoded, two FEC codewords are interleaved before the data is distributed to
each PCS lane. The interleaving of two codewords shall follow this procedure:

For all j=0 to 271

For all i=0 to 9

tx_out<20j+i> = tx_postfec0<10j+i>
tx_out<20j+i+10> = tx_postfec1<10j+i>

Once the data has been Reed-Solomon encoded and interleaved, it shall be distributed to 16 PCS lanes, one
10b symbol at a time, from the lowest to the highest PCS lane. The first bit transmitted from each 10b sym-
bol is bit 0.

Figure 119–9—PCS Block distribution

TBD
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

95

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.2.4.8 Transmit bit ordering

[Editor’s note: The transmit bit ordering is TBD and will be illustrated in Figure 119–10 once defined.]

119.2.4.9 Test-pattern generators

The PCS shall have the ability to generate and detect a scrambled idle test pattern. This test-pattern mode is
suitable for receiver tests and for certain transmitter tests.

When a scrambled idle pattern is enabled, the test pattern is generated by the PCS. The test pattern is an idle
control block (block type=0x1E) with all idles as defined in Figure 119–3. This is sent continuously and is
transcoded, scrambled and encapsulated by the FEC.

When the transmit channel is operating in test-pattern mode, the encoded bit stream is distributed to the PCS
Lanes as in normal operation (see 119.2.4.7).

If a Clause 45 MDIO is implemented, then control of the test-pattern generation is from the BASE-R PCS
test-pattern control register (bit 3.42.3).

119.2.5 Receive function

119.2.5.1 Alignment lock and deskew

The RS-FEC receive function forms 16 bit streams by concatenating the bits from each of the 16
PMA:IS_UNITDATA_i.indication primitives in the order they are received. It obtains lock to the alignment
markers as specified by the alignment marker lock state diagram shown in Figure 119–11.

After alignment marker lock is achieved on all 16 lanes, all inter-lane Skew is removed as specified by the
PCS synchronization state diagram shown in Figure 119–12. The FEC receive function shall support a max-
imum Skew of 180 ns between FEC lanes and a maximum Skew Variation of 4 ns.

Figure 119–10—Transmit bit ordering

TBD
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

96

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.2.5.2 Lane reorder and de-interleave

PCS lanes can be received on different lanes of the service interface from which they were originally trans-
mitted. The PCS receive function shall order the PCS lanes according to the PCS lane number. The PCS lane
number is defined by the alignment marker that is mapped to each PCS lane (see 119.2.4.4).

After all PCS lanes are aligned, deskewed, and reordered, the FEC lanes are multiplexed together in the
proper order to reconstruct the original stream of FEC codewords. two FEC codewords can be de-inter-
leaved in the proper order to reconstruct the original stream of two FEC codewords.

[Editors note: how data is distributed to PCS lanes is from FEC frames is TBD, and there is the possi-
bility that multiple FEC frames will be interleaved. So how data is reformed before FEC decoding is
TBD.]

119.2.5.3 Reed-Solomon decoder

The Reed-Solomon decoder extracts the message symbols from the codeword, corrects them as necessary,
and discards the parity symbols. The message symbols Data is reverse distributed into rx_scrambled.from
two associated codewords corresponding to 240 transcoded blocks rx_scrambled.

The RS-FEC sublayer shall be capable of correcting any combination of up to t=15 symbol errors in a code-
word. The RS-FEC sublayer shall also be capable of indicating when an errored codeword was not cor-
rected. The probability that the decoder fails to indicate a codeword with t+1 errors as uncorrected is not
expected to exceed 10–6. This limit is also expected to apply for t+2 errors, t+3 errors, and so on.

The Reed-Solomon decoder may provide the option to perform error detection without error correction to
reduce the delay contributed by the RS-FEC sublayer. The presence of this option is indicated by the asser-
tion of the FEC_bypass_correction_ability variable (see 119.3). When the option is provided, it is enabled
by the assertion of the FEC_bypass_correction_enable variable (see 119.3).

NOTE—The PHY may rely on the error correction capability of the RS-FEC to achieve its performance objectives. It is
recommended that acceptable performance of the underlying link is verified before error correction is bypassed.

The Reed-Solomon decoder indicates errors to the 64B/66B decoder by intentionally corrupting 66-bit block
synchronization headers. When the Reed-Solomon decoder determines that a codeword contains errors
(when the bypass correction feature is enabled) or contains errors that were not corrected (when the bypass
correction feature is not supported or not enabled), it shall ensure that, for every 257-bit block within the two
associated codewords, the synchronization header for all 66-bit blocks at the output of the 256B/257B to
64B/66B transcoder, rx_coded_0<1:0>, is set to 11. This causes the PCS to discardmark all frames that are
fully or partially within the two associated codewords.

119.2.5.4 Alignment marker removal

The first 2056 message bits in every 8096th codeword is the vector am_rx<2055:0> where bit 0 is the first
bit received. The specific codewords that include this vector are indicated by the alignment lock and deskew
function.

The vector am_rx shall be removed prior to transcoding.

119.2.5.5 Descrambler

The payload, rx_scrambled<256:0>, is descrambled with a self-synchronizing scrambler to generate
rx_xcoded<256:0>.

The descrambler is identical to that used in Clause 49, see 49.2.10 for the definition.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

97

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.2.5.6 256B/257B to 64B/66B transcoder

The transcoder extracts a group of four 66-bit blocks, rx_coded_j<65:0> where j=0 to 3, from each 257-bit
block rx_xcoded<256:0>. Bit 0 of the 257-bit block is the first bit received.

If rx_xcoded<0> is 1, rx_coded_j<65:0> for j=0 to 3 shall be derived as follows.

a1) rx_coded_j<65:2> = rx_xcoded<(64j+64):(64j+1)> for j=0 to 3
b1) rx_coded_j<0>=0 and rx_coded_j<1>=1 for all j=0 to 3

If rx_xcoded<0> is 0 and any rx_xcoded<j+1>=0 for j=0 to 3, rx_coded_j<65:0> for j=0 to 3 shall be
derived as follows.

a2) Let c be the smallest value of j such that rx_xcoded<j+1>=0. In other words, rx_coded_c is the first
66-bit control block in the resulting group of four blocks.

b2) Let rx_payloads be a vector representing the payloads of the four 66-bit blocks. It is derived using
the following expressions:
rx_payloads<(64c+3):0> = rx_xcoded<(64c+8):5>
rx_payloads<(64c+7):(64c+4)> = 0000 (an arbitrary value that is later replaced by s_c)
rx_payloads<255:(64c+8)> = rx_xcoded<256:(64c+9)>

c2) rx_coded_j<65:2> = rx_payloads<(64j+63):64j> for j=0 to 3
d2) Let f_c<3:0> = rx_coded_c<5:2> be the scrambled first nibble (based on transmission order) of the

block type field for rx_coded_c.
e2) The block type field may be uniquely identified by either its most or least significant nibble. Since

g<3:0> is the least significant nibble of the block type field (per the transmission order), derive
h<3:0> by cross-referencing to g<3:0> using Figure 119–3. For example, if g<3:0> is 0xE then
h<3:0> is 0x1. If no match to g<3:0> is found, h<3:0> is set to 0000.

f2) If rx_xcoded<j+1>=0, rx_coded_j<0>=1 and rx_coded_j<1>=0 for j=0 to 3
g2) If rx_xcoded<j+1>=1, rx_coded_j<0>=0 and rx_coded_j<1>=1 for j=0 to 3
h2) If h<3:0> = 0000, rx_coded_c<1>=1 (invalidate synchronization header)

If rx_xcoded<0> is 0 and all rx_xcoded<j+1>=1 for j=0 to 3, rx_coded_j<65:0> for j=0 to 3 shall be derived
as follows.

a3) Set c = 0 and h<3:0> = 0000.
b3) Let rx_payloads be a vector representing the payloads of the four 66-bit blocks. It is derived using

the following expressions.
rx_payloads<(64c+3):0> = rx_xcoded<(64c+8):5>
rx_payloads<(64c+7):(64c+4)> = 0000 (an arbitrary value that is later replaced by s_c)
rx_payloads<255:(64c+8)> = rx_xcoded<256:(64c+9)>

c3) rx_coded_j<65:2> = rx_payloads<(64j+63):(64j)> for j=0 to 3
d3) rx_coded_j<0>=0 and rx_coded_j<1>=0 for j=0 and 2
e3) rx_coded_j<0>=1 and rx_coded_j<1>=1 for j=1 and 3

The 66-bit blocks are transmitted in order from j=0 to 3. Bit 0 of each block is the first bit transmitted.

119.2.5.7 Receive process

The receive process decodes blocks to produce RXD<63:0> and RXC<7:0> for transmission to the CDMII.
One CDMII data transfer is decoded from each block. The receive process must insert idle control characters
to compensate for the removal of alignment markers. If the PCS receive process spans multiple clock
domains, it may also perform clock rate compensation via the deletion of idle control characters or sequence
ordered sets or the insertion of idle control characters.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

98

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The receive process decodes blocks as specified in the receive state diagram shown in Figure 119–16.

119.2.5.8 Test-pattern checker

When the receive channel is operating in scrambled idle test-pattern mode, the scrambled idle test-pattern
checker checks the bits received via PMA:IS_UNITDATA_i.indication primitives.

The scrambled idle test-pattern checker utilizes the alignment marker lock state diagram, the PCS deskew
state diagram, and the descrambler operating as they do during normal data reception. The BER monitor
state diagram is disabled during receive test-pattern mode. When align_status is true and the scrambled idle
receive test-pattern mode is active, the scrambled idle test-pattern checker observes the sync header and the
output from the descrambler. When the sync header and the output of the descrambler is the all idle pattern,
a match is detected. When operating in scrambled idle test pattern, the test-pattern error counter counts
blocks with a mismatch. Any mismatch indicates an error and shall increment the test-pattern error counter.

If a Clause 45 MDIO is implemented, then control of the test-pattern reception is from the BASE-R PCS
test-pattern control register (bit 3.42.2). In addition errors are counted in the BASE-R PCS test-pattern error
counter register (3.43.15:0).

119.2.6 Detailed functions and state diagrams

119.2.6.1 State diagram conventions

The body of this subclause is composed of state diagrams, including the associated definitions of variables,
functions, and counters. Should there be a discrepancy between a state diagram and descriptive text, the state
diagram prevails.

The notation used in the state diagrams follows the conventions of 21.5. The notation ++ after a counter or
integer variable indicates that its value is to be incremented.

119.2.6.2 State variables

119.2.6.2.1 Constants

EBLOCK_R<71:0> 
72 bit vector to be sent to the CDMII containing /E/ in all the eight character locations.

EBLOCK_T<65:0>
66 bit vector to be sent to the PMA containing /E/ in all the eight character locations.

LBLOCK_R<71:0>
72 bit vector to be sent to the CDMII containing one Local Fault ordered set. The Local Fault
ordered set is defined in 119.3.

LBLOCK_T<65:0>
66 bit vector to be sent to the PMA containing one Local Fault ordered set.

119.2.6.2.2 Variables

all_locked
A Boolean variable that is set to true when amps_lock<x> is true for all x and is set to false when
amps_lock<x> is false for any x.

amp_counter_done
Boolean variable that indicates that amp_counter has reached its terminal count.

amp_match
Boolean variable that holds the output of the function AMP_COMPARE.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

99

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
amp_valid
Boolean variable that is set to true if the received 120-bit block is a valid alignment marker pay-
load. The alignment marker payload, mapped to an PCS lane according to the process described in
119.2.4.4, consists of 120 known bits. The bits are compared on a TBD basis. If TBD, the candi-
date block is considered a valid alignment marker payload.

amps_lock<x>
Boolean variable that is set to true when the receiver has detected the location of the alignment
marker payload sequence for a given lane on the PMA service interface, where x = 0:15.

current_pcsl
A variable that holds the PCS lane number corresponding to the current alignment marker payload
that is recognized on a given lane of the PMA service interface. It is compared to the variable
first_pcsl to confirm that the location of the alignment marker payload sequence has been detected.

cw_bad
A Boolean variable that is set to true if the Reed-Solomon decoder (see 119.2.5.3) fails to correct
the current FEC codeword and is set to false otherwise.

deskew_done
A Boolean variable that is set to true when pcs_enable_deskew is set to true and the deskew pro-
cess is completed. Otherwise, this variable is set to false.

align_status 
A variable set by the PCS alignment process to reflect the status of PCS lane-to-lane alignment. Set
to true when all lanes are synchronized and aligned and set to false when the deskew process is not
complete.

pcs_alignment_valid
Boolean variable that is set to true if all PCS lanes are aligned. PCS lanes are considered to be
aligned when amps_lock<x> is true for all x, each PCS lane is locked to a unique alignment marker
payload sequence (see 119.2.4.4), and the PCS lanes are deskewed. Otherwise, this variable is set
to false.

pcs_enable_deskew
A Boolean variable that enables and disables the deskew process. Received bits may be discarded
whenever deskew is enabled. It is set to true when deskew is enabled and set to false when deskew
is disabled.

pcs_lane
A variable that holds the PCS lane number (0 to 15) received on lane x of the PMA service inter-
face when amps_lock<x>=true. The PCS lane number is determined by the alignment marker pay-
loads based on the mapping defined in 119.2.4.4. The 56 bits that are in the positions of the unique
bits in the received alignment marker payload are compared to the expected values for a given pay-
load position and FEC lane on a TBD basis. If no more than TBD nibbles in the candidate block
fail to match the corresponding known nibbles for any payload position on a given PCS lane, then
the PCS lane number is assigned accordingly.

first_pcsl
A variable that holds the PCS lane number that corresponds to the first alignment marker payload
that is recognized on a given lane of the PMA service interface. It is compared to the PCS lane
number corresponding to the second alignment marker payload that is tested.

hi_ber
TBD

r_test_mode
Boolean variable that is asserted true when the receiver is in test-pattern mode.

reset
Boolean variable that controls the resetting of the PCS sublayer. It is true whenever a reset is nec-
essary including when reset is initiated from the MDIO, during power on, and when the MDIO has
put the PCS sublayer into low-power mode.

restart_lock
Boolean variable that is set by the PCS alignment process to reset the synchronization process on
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

100

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
all PCS lanes. It is set to true after 3 consecutive uncorrected codewords are received (3_BAD
state) and set to false upon entry into the LOSS_OF_ALIGNMENT state.

rx_coded<65:0>
Vector containing the input to the 64B/66B decoder. The format for this vector is shown in
Figure 119–3. The leftmost bit in the figure is rx_coded<0> and the rightmost bit is rx_coded<65>.

rx_raw<71:0> 
Vector containing one XLGMII/CGMII transfer. RXC<0> through RXC<7> are from rx_raw<0>
through rx_raw<7>, respectively. RXD<0> through RXD<63> are from rx_raw<8> through
rx_raw<71>, respectively.

signal_ok
Boolean variable that is set based on the most recently received value of PMA:IS_SIGNAL.indica-
tion(SIGNAL_OK). It is true if the value was OK and false if the value was FAIL.

slip_done
Boolean variable that is set to true when the SLIP requested by the synchronization state diagram
has been completed indicating that the next candidate 120-bit block position can be tested.

test_amp
Boolean variable this is set to true when a candidate block position is available for testing and false
when the FIND_1ST state is entered.

test_cw
Boolean variable that is set to true when a new FEC codeword is available for decoding and is set
to false when the TEST_CW state is entered.

tx_coded<65:0>
Vector containing the output from the 64B/66B encoder. The format for this vector is shown in
Figure 119–3. The leftmost bit in the figure is tx_coded<0> and the rightmost bit is tx_coded<65>.

tx_raw<71:0> 
Vector containing one XLGMII/CGMII transfer. TXC<0> through TXC<7> are placed in
tx_raw<0> through tx_raw<7>, respectively. TXD<0> through TXD<63> are placed in
tx_raw<8> through tx_raw<71>, respectively.

119.2.6.2.3 Functions

AMP_COMPARE
This function compares the values of first_pcsl and current_pcsl to determine if a valid alignment
marker payload sequence has been detected and returns the result of the comparison using the
variable amp_match. If current_pcsl and first_pcsl are 0, amp_match is set to true.

DECODE(rx_coded<65:0>) 
Decodes the 66-bit vector returning rx_raw<71:0>, which is sent to the CDMII. The DECODE
function shall decode the block as specified in 119.2.3.

ENCODE(tx_raw<71:0>) 
Encodes the 72-bit vector returning tx_coded<65:0> of which tx_coded<65:2> is sent to the
scrambler. The two bits of the sync header bypass the scrambler. The ENCODE function shall
encode the block as specified in 119.2.3.

R_TYPE(rx_coded<65:0>)
This function classifies the current rx_coded<65:0> vector as belonging to one of the following
types, depending on its contents. The classification results are returned via the r_block_type
variable.
Values: C; The vector contains a sync header of 10 and one of the following:

a) A block type field of 0x1E and eight valid control characters other than /E/ or
/LI/;

b) A block type field of 0x4B.
LI; For EEE capability, the LI type is supported where the vector contains a sync header

of 10, a block type field of 0x1E and eight control characters of 0x06 (/LI/).
S; The vector contains a sync header of 10 and the following:

a) A block type field of 0x78.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

101

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
T; The vector contains a sync header of 10, a block type field of 0x87, 0x99, 0xAA,
0xB4, 0xCC, 0xD2, 0xE1 or 0xFF and all control characters are valid.

D; The vector contains a sync header of 01.
E; The vector does not meet the criteria for any other value.

Valid control characters are specified in Table 119–1.
NOTE—A PCS that does not support EEE classifies vectors containing one or more /LI/ control characters as
type E.

R_TYPE_NEXT
This function classifies the 66-bit rx_coded vector that immediately follows the current
rx_coded<65:0> vector as belonging to one of the five types defined in R_TYPE, depending on its
contents. It is intended to perform a prescient end of packet check. The classification results are
returned via the r_block_type_next variable.

SLIP
Causes the next candidate block position to be tested. The precise method for determining the next
candidate block position is not specified and is implementation dependent. However, an
implementation shall ensure that all possible block positions are evaluated.

T_TYPE = (tx_raw<71:0>)
This function classifies each 72-bit tx_raw vector as belonging to one of the following types
depending on its contents. The classification results are returned via the t_block_type variable.
Values: C; The vector contains one of the following:

a) Eight valid control characters other than /O/, /S/, /T/, /LI/, and /E/;
b) One valid ordered set.

LI; For EEE capability, this vector contains eight /LI/ characters.
S; The vector contains an /S/ in its first character, and all characters following the /S/ are

data characters.
T; The vector contains a /T/ in one of its characters, all characters before the /T/ are data

characters, and all characters following the /T/ are valid control characters other
than /O/, /S/ and /T/.

D; The vector contains eight data characters.
E; The vector does not meet the criteria for any other value.

A tx_raw character is a control character if its associated TXC bit is asserted. A valid control
character is one containing an XLGMII/CGMII control code specified in Table 119–1. A valid
ordered set consists of a valid /O/ character in the first character and data characters in the seven
characters following the /O/. A valid /O/ is any character with a value for O code in Table 119–1.
NOTE—A PCS that does not support EEE classifies vectors containing one or more /LI/ control characters as
type E.

119.2.6.2.4 Counters

amp_counter
This counter counts the 8192 FEC codewords that separate the ends of two consecutive normal
alignment marker payload sequences. An FEC codeword is 340 bits per PCS lane.

cw_bad_count
Counts the number of consecutive uncorrected FEC codewords. This counter is set to zero when an
FEC codeword is received and cw_bad is false for that codeword.

119.2.6.3 State diagrams

The 400GBASE-R PCS shall implement sixteen alignment marker lock processes as depicted in
Figure 119–11. An alignment marker lock process operates independently on each lane. The alignment
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

102

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
marker lock state diagram shown in Figure 119–11 determines when the PCS has obtained alignment marker
lock to the received bit stream for a given lane of the service interface. Each alignment marker lock process
looks for two valid alignment markers 8192 FEC codewords apart to gain alignment marker lock. Once in
lock, a lane will go out of alignment marker lock when three FEC blocks in a row are not correctable. When
the alignment marker lock process achieves lock for a lane, and if a Clause 45 MDIO is implemented, the
PCS shall record the number of the PCS lane received on that lane of the service interface in the appropriate
lane mapping register (3.400 to 3.415).

The PCS shall run the synchronization process as depicted in Figure 119–13. The PCS synchronization
process is responsible for determining if the PCS is capable of presenting coherent data to the CDMII. The
synchronization process ensures that all PCS lanes have alignment marker lock, are locked to different
alignment markers, and that the Skew is within the boundaries of what the PCS can deskew. Synchronization
lock, along with alignment marker lock, are restarted if three FEC codewords in a row are not correctable.

[Editor’s note: The BER Monitor state diagram is TBD.]

The Transmit state diagram shown in Figure 119–15 controls the encoding of transmitted blocks. It makes
exactly one transition for each transmit block processed. Though the Transmit state diagram sends Local
Fault ordered sets when reset is asserted, the scrambler may not be operational during reset. Thus, the Local
Fault ordered sets may not appear on the PMA service interface.

The Receive state diagram shown in Figure 119–16 controls the decoding of received blocks. It makes
exactly one transition for each receive block processed.

The PCS shall perform the functions of alignment marker lock, PCS synchronization, BER Monitor, Trans-
mit, and Receive as specified in the respective state diagrams.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

103

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 119–11—Alignment marker lock state diagram

LOCK_INIT

amps_lock<x>  false
test_amp false

reset + !signal_ok + restart_lock

UCT

GET_BLOCK

slip_done false

FIND_1ST

test_amp false

SLIP

SLIP

COUNT_NEXT

first_pcsl current_pcsl
start amp_counter

COMP_2ND

AMP_COMPARE

2_GOOD

amps_lock<x>  true
PCS_lane_mapping<x>
 pcs_lane

amp_counter_done *
amp_valid

amp_valid!amp_valid

slip_done

amp_match!amp_match

test_amp

amp_counter_done *
!amp_valid
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

104

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 119–13—PCS synchronization state diagram

reset + !all_locked

TEST_CW

test_cw false

!cw_bad

CW_BAD

cw_bad_count++

CW_GOOD

cw_bad_count  0

3_BAD

restart_lock true

ALIGN_ACQUIRED

align_status true
pcs_enable_deskew false
cw_bad_count  0
test_cw false

cw_bad_count = 3

test_cw * (cw_bad_count < 3)

cw_bad

all_locked

LOSS_OF_ALIGNMENT

align_status false
pcs_enable_deskew false
restart_lock  false

test_cw

test_cw

DESKEW

pcs_enable_deskew true

DESKEW_FAIL

restart_lock true

deskew_done *
pcs_alignment_valid

deskew_done *
!pcs_alignment_valid
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

105

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 119–14—BER monitor state diagram

TBD
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

106

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 119–15—Transmit state diagram

TX_INIT

reset

T_TYPE(tx_raw) = C

tx_coded  LBLOCK_T

TX_C

tx_coded ENCODE(tx_raw)

T_TYPE(tx_raw) = (E + D + T + LI)T_TYPE(tx_raw) = S

D

D

TX_E

tx_coded EBLOCK_T

T_TYPE(tx_raw) = C

T_TYPE(tx_raw) = S

T_TYPE(tx_raw) = (E + D + T)

TX_D

tx_coded ENCODE(tx_raw)

D

T_TYPE(tx_raw) = D

TX_T

tx_coded ENCODE(tx_raw)

T_TYPE(tx_raw) = T)

T_TYPE(tx_raw) = C

C

C

 T_TYPE(tx_raw) = (E + C + S + LI)

T_TYPE(tx_raw) = D

T_TYPE(tx_raw) = T T_TYPE(tx_raw) = (E + S)

T_TYPE(tx_raw) = S

D

T_TYPE(tx_raw) = C

C

T_TYPE(tx_raw) = (E + D + T)

E T_TYPE(tx_raw) = LI

TX_LI

tx_coded ENCODE(tx_raw)

T_TYPE(tx_raw) = LI

E

T_TYPE(tx_raw) = C

C

T_TYPE(tx_raw) =
(E + D + S +T)

NOTE—Optional state (inside the dotted box) and transition E
are only required to support EEE capability.

E

T_TYPE(tx_raw) = LI

E

T_TYPE(tx_raw) = LI
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

107

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 119–16—Receive state diagram

RX_INIT

reset+ r_test_mode +
hi_ber + !align_status

R_TYPE(rx_coded) = C

rx_raw  LBLOCK_R

RX_C

rx_raw DECODE(rx_coded)

R_TYPE(rx_coded) = (E + D + T + LI)R_TYPE(rx_coded) = S

D

D

RX_E

rx_raw EBLOCK_R

R_TYPE(rx_coded) = C

R_TYPE(rx_coded) = S

R_TYPE(rx_coded) = (E + D + T)

RX_D

rx_raw DECODE(rx_coded)

D

R_TYPE(rx_coded) = D

RX_T

rx_raw DECODE(rx_coded)

R_TYPE(rx_coded) = T
R_TYPE_NEXT = (S + C + LI)

R_TYPE(rx_coded) = C

C

C

(R_TYPE(rx_coded) = T
R_TYPE_NEXT  (E + D + T)) +
R_TYPE(rx_coded) = (E + C + S + LI)

R_TYPE(rx_coded) = D

R_TYPE(rx_coded) = T
R_TYPE_NEXT = (S + C + LI)

(R_TYPE(rx_coded) = T 
R_TYPE_NEXT  (E + D + T))
+ R_TYPE(rx_coded) = (E + S)

R_TYPE(rx_coded)= S

D

R_TYPE(rx_coded) = C

C

RX_LI

rx_raw LI

E

R_TYPE(rx_coded) = C

C

R_TYPE(rx_coded) =
(E + D + S +T)

E R_TYPE(rx_coded) = LI

E

R_TYPE(rx_coded) = LI

E
R_TYPE(rx_coded) = LI

NOTE—Optional state (inside the dotted box) and transition E are
only required to support EEE capability.
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

108

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.3 PCS MDIO function mapping

The optional MDIO capability described in Clause 45 defines several registers that provide control and
status information for and about the PCS. If MDIO is implemented, it shall map MDIO control bits to PCS
control variables as shown in Table 119–3, and MDIO status bits to PCS status variables as shown in
Table 119–4.

Table 119–3—MDIO/PCS control variable mapping

MDIO control variable PCS register name Register/ bit
number PCS control variable

Reset PCS control 1 register 3.0.15 reset

Loopback PCS control 1 register 3.0.14 Loopback

Transmit test-pattern
enable

BASE-R PCS test-pattern
control register

3.42.3 tx_test_mode

Receive test-pattern enable BASE-R PCS test-pattern
control register

3.42.2 rx_test_mode

LPI_FW LPI fast wake enable 3.20.0 LPI_FW

FEC bypass correction enable RS-FEC control register 1.200.0 FEC_bypass_correction_enable

Table 119–4—MDIO/PCS status variable mapping

MDIO status variable PCS register name Register/ bit
number

PCS status variable

BASE-R and 10GBASE-T
receive link status

BASE-R and 10GBASE-T PCS
status 1 register

3.32.12 PCS_status

BASE-R and 10GBASE-T PCS
high BER

BASE-R and 10GBASE-T PCS
status 1 register

3.32.1 hi_ber - TBD

Lane x aligned Multi-lane BASE-R PCS align-
ment status 3 and 4 registers

3.52.7:0
3.53.7:0

am_lock<x>

PCS lane alignment status Multi-lane BASE-R PCS 
alignment status 1 register

3.50.12 align_status

BER BASE-R and 10GBASE-T PCS
status 2 register
BER high order counter register

3.33.13:8

3.44.15:0

ber_count - TBD

Test-pattern error counter BASE-R PCS test-pattern error
counter register

3.43.15:0 test_pattern_error_count

Lane x mapping Lane x mapping register 3.400 through
3.415

lane_mapping

FEC bypass correction ability RS-FEC status register 1.201.0 FEC_bypass_correc-
tion_ability

FEC corrected codewords RS-FEC corrected codewords
counter register

1.202, 1.203 FEC_correct-
ed_cw_counter
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

109

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.4 Loopback

If a Clause 45 MDIO is implemented, then the PCS shall be placed in the loopback mode when the loopback
bit from the PCS control 1 register (bit 3.0.14) is set to a one. In this mode, the PCS shall accept data on the
transmit path from the CDMII and return it on the receive path to the CDMII. In addition, the PCS shall
transmit what it receives from the CDMII to the PMA sublayer, and shall ignore all data presented to it by
the PMA sublayer.

119.5 Delay constraints

The maximum delay contributed by the 400GBASE-R PCS (sum of transmit and receive delays at one end
of the link) shall be no more than TBD BT (TBD pause_quanta or TBD ns). A description of overall system
delay constraints and the definitions for bit times and pause_quanta can be found in 116.4 and its references.

FEC uncorrected codewords RS-FEC uncorrected codewords
counter register

1.204, 1.205 FEC_uncorrect-
ed_cw_counter

FEC symbol errors, PCS lanes 0
to 15

RS-FEC symbol error counter
register, PCS lanes 0 to 15

1.210 to 1.229,
1.600 ro 1.611

FEC_symbol_er-
ror_counter_i

Tx LPI indication Tx LPI indication 3.1.9 Tx LPI indication

Tx LPI received Tx LPI received 3.1.11 Tx LPI received

Rx LPI indication Rx LPI indication 3.1.8 Rx LPI indication

Rx LPI received Rx LPI received 3.1.10 Rx LPI received

Wake_error_counter Wake_error_counter 3.22 Wake_error_counter

Table 119–4—MDIO/PCS status variable mapping (continued)

MDIO status variable PCS register name
Register/ bit

number PCS status variable
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

110

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.6 Protocol implementation conformance statement (PICS) proforma for
Clause 119, Physical Coding Sublayer (PCS) for 400 Gb/s3

119.6.1 Introduction

The supplier of a protocol implementation that is claimed to conform to Clause 119, Physical Coding
Sublayer (PCS) for 400 Gb/s, shall complete the following protocol implementation conformance statement
(PICS) proforma.

A detailed description of the symbols used in the PICS proforma, along with instructions for completing the
PICS proforma, can be found in Clause 21.

119.6.2 Identification

119.6.2.1 Implementation identification

119.6.2.2 Protocol summary

3Copyright release for PICS proformas: Users of this standard may freely reproduce the PICS proforma in this subclause so that it can
be used for its intended purpose and may further publish the completed PICS.

Supplier1

Contact point for inquiries about the PICS1

Implementation Name(s) and Version(s)1,3

Other information necessary for full identification—e.g.,
name(s) and version(s) for machines and/or operating
systems; System Name(s)2

NOTE 1—Required for all implementations.
NOTE 2—May be completed as appropriate in meeting the requirements for the identification.
NOTE 3—The terms Name and Version should be interpreted appropriately to correspond with a supplier’s terminol-
ogy (e.g., Type, Series, Model).

Identification of protocol standard IEEE Std 802.3bs-201x, Clause 119, Physical Coding Sub-
layer (PCS) for 400 Gb/s

Identification of amendments and corrigenda to this
PICS proforma that have been completed as part of
this PICS

Have any Exception items been required? No [] Yes []
(See Clause 21; the answer Yes means that the implementation does not conform to IEEE Std 802.3bs-201x.)

Date of Statement
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

111

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.6.3 Major capabilities/options

CDE40
0

CDMII logical interface 117,
119.1.4.1

Logical interface is supported O Yes []
No []

MD MDIO 45, 119.3 Registers and interface 
supported

O Yes []
No []

119.6.4 PICS proforma tables for Physical Coding Sublayer (PCS) for 400 Gb/s

119.6.4.1 Transmit function

Item Feature Subclause Value/Comment Status Support

BEC Bypass error correction 119.2.5.3 Capability is supported O Yes []
No []

DC Delay constraints 119.5 Conforms to delay constraints
specified in 119.5

M Yes []

EEE EEE capability 119.2.3.3 Capability is supported O Yes []
No []

*JTM Supports test-pattern mode 119.6.5 O Yes []
No []

Item Feature Subclause Value/Comment Status Support

TF1 Skew tolerance 119.2.5.1 Maximum Skew of 180 ns
between PCS lanes and a
maximum Skew Variation of
4 ps

M Yes []

TF2 64B/66B to 256B/257B 
transcoder

119.2.4.2 tx_xcoded<256:0> 
constructed per 119.2.4.2

M Yes []

TF3 Transmission bit ordering 119.2.4.8 First bit transmitted is bit 0 M Yes []

TF4 Pad value 119.2.4.4 PRBS9 M Yes []

TF5 Alignment marker insertion 119.2.4.4 First 2056 message bits to be
transmitted from every 8096th

codeword

M Yes []

TF6 Pre-FEC distribution 119.2.4.5 Distribute the data to two FEC
codewords

M Yes []

TF67 Reed-Solomon encoder for
400GBASE-R PCS

119.2.4.5 RS(544,514) M Yes []

TF78 Symbol distribution 119.2.4.7 Distribution is TBDbased on
10b symbols

M Yes []
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

112

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.6.4.2 Receive function

Corrupts 66-bit block
synchronization headers for
uncorrected errored
codewords (or errored
codewords when correction is
bypassed)

Item Feature Subclause Value/Comment Status Support

RF1 Skew tolerance 119.2.5.1 Maximum Skew of 180 ns
between PCS lanes and a
maximum Skew Variation of
4 ns

M Yes []

RF2 Lane reorder and de-inter-
leave

119.2.5.2 Order the PCS lanes accord-
ing to the PCS lane number,
and de-interleave the FEC
codewords

M Yes []

RF3 Reed-Solomon decoder 119.2.5.3 Corrects any combination of
up to t=15 symbol errors in a
codeword unless error correc-
tion bypassed

M Yes []

RF4 Reed-Solomon decoder 119.2.5.3 Capable of indicating when a
codeword was not corrected.

M Yes []

RF5 Error indication function 119.2.5.3 M Yes []

RF6 Error indication when error
correction is bypassed

119.2.5.3 Error indication is not
bypassed

M Yes []
N/A []

RF9 256B/257B to 64B/66B
transcoder

119.2.5.6 rx_coded_j<65:0>, j=0 to 3
constructed per 119.2.5.6

M Yes []
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

113

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.6.4.3 64B/66B Coding rules

C1
Encoder (and ENCODE 
function) implements the code
as specified

119.2.3 and
119.2.6.2.3 M

Yes []
No []

C2
Decoder (and DECODE 
function) implements the code
as specified

119.2.3 and
119.2.6.2.3

M Yes []
No []

C3 Only valid block types are
transmitted

119.2.3.2 M Yes []
No []

C4 Invalid block types are treated
as an error 119.2.3.2 M Yes []

No []

C5
Only valid control characters
are transmitted 119.2.3.3 M

Yes []
No []

C6 Invalid control characters are
treated as an error

119.2.3.3 M Yes []
No []

C7 Idles do not interrupt data 119.2.3.5 M Yes []
No []

C8
IDLE control code insertion
and deletion 119.2.3.5

Insertion or Deletion in groups
of 8 /I/s M

Yes []
No []

C9 Sequence ordered set deletion 119.2.3.8
Only one whole ordered set of
two consecutive sequence
ordered sets may be deleted

M
Yes []
No []

119.6.4.4 Scrambler and Descrambler

S1 Scrambler 119.2.4.3 Performs as shown in 
Figure 49–8 M Yes []

No []

S2 Descrambler 119.2.5.5 Performs as shown in 
Figure 49–10 M Yes []

No []

Item Feature Subclause Value/Comment Status Support

Item Feature Subclause Value/Comment Status Support
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

114

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.6.4.5 Alignment Markers

AM1 Alignment marker insertion 119.2.4.4
Alignment markers are
inserted periodically as
described in section 119.2.4.4

M Yes []
No []

AM2 Alignment marker form 119.2.4.4
Alignment markers are formed
as described in section
119.2.4.4

M Yes []
No []

AM3 Lane mapping 119.2.6.3 PCS lane number is captured MD:M
Yes []
No []

119.6.5 Test-pattern modes

JT1
Scrambled idle transmit
test-pattern generator is
implemented

119.2.4.9 JTM:M
Yes []
No []
N/A[]

JT2 Scrambled idle receive test-
pattern checker is implemented 119.2.5.8 JTM:M

Yes []
No []
N/A[]

JT3
Transmit and receive
test-pattern modes can 
operate simultaneously

119.2.1 JTM:M
Yes []
No []
N/A[]

119.6.5.1 Bit order

B1 Transmit bit order 119.2.4.8
Placement of bits into the PCS
lanes as shown in
Figure 119–10

M
Yes []
No []

119.6.6 Management

M1 Alternate access to PCS Man-
agement objects is provided

119.3 O Yes []
No []

Item Feature Subclause Value/Comment Status Support

Item Feature Subclause Value/Comment Status Support

Item Feature Subclause Value/Comment Status Support

Item Feature Subclause Value/Comment Status Support
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

115

Draft Amendment to IEEE Std 802.3-201x IEEE Draft P802.3bs/D0.4
IEEE P802.3bs 400 Gb/s Ethernet Task Force 28th August 2015

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
119.6.6.1 State diagrams

SM1 Alignment Marker Lock 119.2.6
Implements 16 alignment
marker lock processes as
depicted in Figure 119–11

M
Yes []
No []

SM2 The SLIP functions evaluates
all possible blocks 119.2.6.2.3 M Yes []

No []

SM3
PCS synchronization state dia-
gram 119.2.6

Meets the requirements of 
Figure 119–13 M

Yes []
No []

SM4 BER Monitor TBD M Yes []
No []

SM5 Transmit process 119.2.6 M Yes []
No []

SM6 Receive process 119.2.6
Meets the requirements of
Figure 119–16 M

Yes []
No []

119.6.6.2 Loopback

L1 Supports loopback 119.4 M
Yes []
No []
N/A[]

L2
When in loopback, transmits
what it receives from the
CDMII

119.4 M
Yes []
No []

119.6.6.3 Delay constraints

TIM1 PCS Delay Constraint 119.5
No more than TBD BT for sum
of transmit and receive path
delays for 400GBASE-R.

M
Yes []
No []

Item Feature Subclause Value/Comment Status Support

Meets the requirements of
Figure 119–15

Item Feature Subclause Value/Comment Status Support

Item Feature Subclause Value/Comment Status Support
Copyright © 2015 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

116

	119. Physical Coding Sublayer (PCS) for 64B/66B, type 400GBASE-R
	119.1 Overview
	119.1.1 Scope
	119.1.2 Relationship of 400GBASE-R to other standards
	119.1.3 Physical Coding Sublayer (PCS)
	119.1.4 Inter-sublayer interfaces
	119.1.4.1 PCS service interface (CDMII)
	119.1.4.2 Physical Medium Attachment (PMA) service interface

	119.1.5 Functional block diagram

	119.2 Physical Coding Sublayer (PCS)
	119.2.1 Functions within the PCS
	119.2.2 Use of blocks
	119.2.3 64B/66B code
	119.2.3.1 Notation conventions
	119.2.3.2 64B/66B Block structure
	119.2.3.3 Control codes
	119.2.3.4 Valid and invalid blocks
	119.2.3.5 Idle (/I/)
	119.2.3.6 Start (/S/)
	119.2.3.7 Terminate (/T/)
	119.2.3.8 Ordered set (/O/)
	119.2.3.9 Error (/E/)

	119.2.4 Transmit
	119.2.4.1 Transmit process
	119.2.4.2 64B/66B to 256B/257B transcoder
	119.2.4.3 Scrambler
	119.2.4.4 Alignment marker insertion
	119.2.4.5 Pre-FEC Distribution
	119.2.4.6 Reed-Solomon encoder
	119.2.4.7 Symbol distribution
	119.2.4.8 Transmit bit ordering
	119.2.4.9 Test-pattern generators

	119.2.5 Receive function
	119.2.5.1 Alignment lock and deskew
	119.2.5.2 Lane reorder and de-interleave
	119.2.5.3 Reed-Solomon decoder
	119.2.5.4 Alignment marker removal
	119.2.5.5 Descrambler
	119.2.5.6 256B/257B to 64B/66B transcoder
	119.2.5.7 Receive process
	119.2.5.8 Test-pattern checker

	119.2.6 Detailed functions and state diagrams
	119.2.6.1 State diagram conventions
	119.2.6.2 State variables
	119.2.6.2.1 Constants
	119.2.6.2.2 Variables
	119.2.6.2.3 Functions
	119.2.6.2.4 Counters

	119.2.6.3 State diagrams

	119.3 PCS MDIO function mapping
	119.4 Loopback
	119.5 Delay constraints
	119.6 Protocol implementation conformance statement (PICS) proforma for Clause 119, Physical Coding Sublayer (PCS) for 400 Gb/s
	119.6.1 Introduction
	119.6.2 Identification
	119.6.2.1 Implementation identification
	119.6.2.2 Protocol summary

	119.6.3 Major capabilities/options
	119.6.4 PICS proforma tables for Physical Coding Sublayer (PCS) for 400 Gb/s
	119.6.4.1 Transmit function
	119.6.4.2 Receive function
	119.6.4.3 64B/66B Coding rules
	119.6.4.4 Scrambler and Descrambler
	119.6.4.5 Alignment Markers

	119.6.5 Test-pattern modes
	119.6.5.1 Bit order

	119.6.6 Management
	119.6.6.1 State diagrams
	119.6.6.2 Loopback
	119.6.6.3 Delay constraints

