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Introduction

» Optical link power penalty associated with MPI (Multi-Path
Interference) is an important part of link power budget. It
also helps determine maximum discrete reflectance and optical
return loss of a channel.

» Although the worst-case outcome, an outage, has a low
probability of occurring, it can severely impair link
performance for long when it occurs.

» MPI penalty is difficult to measure experimentally.
» Comprehensive, closed-form analytical solution is also difficult.

» Here we present a combination of approximation and
simulation in order to help estimate MPI penalty.
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Plan of This Presentation

Describe Upper Bound model
Introduce a Discount Factor

Describe simulation

Ll A

Show alignment between Discounted Upper Bound and
simulation

5. Estimate a range of values of MPI penalty for various link
scenarios
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Upper Bound
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Upper Bound

» For PAM-m, amplitudes A;, i = 1..m, are transmitted.

> Received signal field u(t) = Boet + 2N | VR2 By e/(@t+0k),
where

» By is the victim amplitude; By are the interfering amplitudes

» 6y is a random variable in [0,27). It accounts for various path
lengths of interference etalons, as well as spectral width /
phase noise. For a more granular treatment of 6 that separately
accounts for phase noise and path length, see reference [1].

» N is the number of interfering terms. N = p(p —1)/2, where p
is the number of reflectance points in a link: n number of
connectors + 2 PMD reflectance points.

» PMD reflectance is assumed equal to connector reflectance R.

» We make two worst-case assumptions:
» Bj = Ap, for all j € [0, N]. Victim is at highest PAM amplitude,
and all interfering terms are of highest PAM amplitude.
> 0~k = 0~ i.e., it is common to all interferers
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—

> Therefore, u(t) = Aneit(1 + NRel’) where NRei? is the
interference term.

> 1(t) = |u(t)]* =~ Am(1 4+ 2NRcosf) where 2NRcos is the
noise intensity term.

» Since cosf is bounded within [-1,1], peak-to-peak noise
intensity < ANRA,,2.

» MPI Penalty, dB = 10 |0g10(m)

. A2 _ A2 . . . A2
> Substitute OMAjpner = —2—7*, extinction ratio E = 22
1
> MPI Penalty, dB = 10logy(12:), x = (m — 1)4NR(£57)
» This is an upper bound. The reward of this conservative choice
is elimination of outage risk.
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Accounting for PMD Reflectances Separately

> It is helpful to separate out reflectance values of transmitter,
receiver, and connectors, because it enables us to explore
various scenarios.

» For n connectors between Tx and Rx, We can count various
reflections separately and add them up [4].

» One reflection between Tx and Rx

n reflections between Tx and n connectors
n reflections between Rx and n connectors
n(n — 1)/2 reflections among n connectors

> MPI Penalty, dB = 10logyo(12:), x = (m — 1)45(£55),
where S = \/ReR, + nv/RiRe + ny/R,Re + 22U R,
Rc, R, R, are discrete reflectances of connectors, transmitter
and receiver, respectively. Table 1 lists a few examples.

v vy
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MPI Penalty, Upper Bound

Extinction Ratio 4.5 dB

Table 1: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors. PAM4, Ext. Ratio
4.5 dB. All values in dB. No discount factor applied (D = 1).

Cases Tx Rx Conn Pmpi(2) Pmpi(4) Pmpi(6)

Case A 26 26 26 1.43 5.24 -

Case B 20 20 26 4.04 - -

CaseC 26 26 35 0.55 1.05 1.76
CaseD 35 35 35 0.16 0.40 0.78
CaseE 26 26 55 0.24 0.27 0.30
Case F 26 26 45 0.31 0.42 0.55
Case G 20 26 55 0.47 0.52 0.57
CaseH 20 26 45 0.58 0.75 0.95
Case | 20 26 35 0.96 1.72 2.83
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MPI Penalty, Upper Bound

Extinction Ratio 5 dB

Table 2: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors. PAM4, Ext. Ratio 5
dB. All values in dB. No discount factor applied (D = 1).

Cases Tx Rx Conn Pmpi(2) Pmpi(4) Pmpi(6)

Case A 26 26 26 1.33 4.70 -

Case B 20 20 26 3.68 - -

CaseC 26 26 35 0.52 0.98 1.64
CaseD 35 35 35 0.15 0.38 0.73
CaseE 26 26 55 0.22 0.25 0.29
Case F 26 26 45 0.29 0.40 0.51
Case G 20 26 55 0.44 0.49 0.54
CaseH 20 26 45 0.55 0.71 0.89
Case | 20 26 35 0.90 1.60 2.61
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MPI Penalty, Upper Bound

Extinction Ratio 6 dB

Table 3: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors. PAM4, Ext. Ratio 6
dB. All values in dB. No discount factor applied (D = 1).

Cases Tx Rx Conn Pmpi(2) Pmpi(4) Pmpi(6)

Case A 26 26 26 1.20 4.01 -

Case B 20 20 26 3.20 - -

CaseC 26 26 35 0.47 0.89 1.47
CaseD 35 35 35 0.13 0.34 0.66
CaseE 26 26 55 0.20 0.23 0.26
Case F 26 26 45 0.26 0.36 0.47
Case G 20 26 55 0.40 0.45 0.49
CaseH 20 26 45 0.49 0.64 0.80
Case | 20 26 35 0.81 1.44 2.31
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Discount Factor

» We now introduce an arbitrary discount factor D, to
compensate for the highly conservative nature of this upper
bound — but without raising the outage risk.

» MPI Penalty, dB = 10logyo(125), x = D(m — 1)45(£55)
where 0 < D <1

» How should we determine the appropriate value of D?

Precedents: Look in past IEEE link models

Estimation: Derive a simple approximation

Simulation: Perform Monte Carlo analysis
Measurement: Preferred but hard to get it right

A combination of the above, using good judgment. This
presentation includes the first two.

vV vy vy VvVYyy
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Discount Factor: Precedents

> In the past, IEEE link models have used a similar discount

factor called Reflection Noise factor [3].

» From Notes: "Reflection noise factor of 0.6 introduced to
avoid undue pessimism. The value needs further

consideration.”

Table 4: Reflection Noise Factors Used in past IEEE Link Models*

File Tab Cell  Value

10GEPBud3_1_16a.xls LX4_SMF L10 0.6
1310S L10 0.6
1550540km L10 0.6

EFM0_.0_2.7 .xls 1000LX10SMF L11 0.2
1000BX10.1490 L11 0.6
1000PX10.1310 L11 0.2

*Binary NRZ, 2 PMD reflectances only (no connectors)
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Two Components of Discount Factor

» Let's consider two discounts, using simple approximations.
» Amplitude Discount

» At 25 GBaud, a PAM symbol occupies only 8 meters of fiber.
If we assume that interfering terms are from fairly independent
symbols, where each symbol has PAM amplitude from
{0,1,2,3}, we can scale down the magnitude of interference.
» Risk Scenario: A long burst of PAM 3 symbols.
> Attenuation Discount

» We can view a link as made of multiple segments, where each
segment represents a combination of connector insertion loss
and fiber attenuation. Interfering terms get more attenuated
than signal, as they get bounced around the link.

IEEE 802.3bs Jan 2016 14



Amplitude Discount

» Amplitude Discount Factor

D= 3(Jg + 58 +\/5E + 1)
» See Appendix B for derivation of D
» MPI Penalty, dB = 10log;o(125), x = Di(m — 1)4S(£55)

Table 5: Amplitude Discount Factor D; for PAM4

E(dB) Dy

4 0.82
45 0.81
5 0.79
6 0.77
8 073

100 0.60
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Attenuation Discount

)[%

» Attenuation Discount Factor D, =

» See Appendix C for derivation of D», based on the assumption
that channel insertion loss is evenly divided over n segments.

> MPI Penalty, dB = 10log;o(1L:), x = Da(m — 1)4S(£E7)

> See table on the next page for values of Dy and how they
affect overall discount.
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Example Values of Discount Factor D

Table 6: Example values of Discount Factor D and MPI Penalty

Cases E n seg Rt Rr Rc ChiL D, D, D

DR4-A 5 4 001 -20 -26 -35 0.0 0.79 1.00 0.79
DR4-B 5 4 075 -20 -26 -35 3.0 0.79 0.72 0.7
DR4-C 5 4 075 -20 -26 -45 3.0 0.79 0.62 0.49
FR8-A 45 2 200 -26 -26 -26 4.0 0.81 0.78 0.63
FR8-B 45 4 001 -26 -26 -35 0.0 0.81 1.00 0.81
FR8-C 45 4 100 -26 -26 -35 4.0 0.81 0.68 0.55
LR8-A 45 2 300 -26 -26 -26 6.0 0.81 0.71 0.57
LR8-B 45 6 001 -26 -26 -35 0.1 0.81 0.99 0.80
LR8-C 45 6 1.00 -26 -26 -35 6.0 0.81 0.60 0.48

» Notice how D> moves in opposite direction to ChlIL, making D stay near 0.5 at
max ChIL (marked in red). This suggests that we should estimate MPI penalty
for D=0.5 and D=0.6.
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Channel Model Diagram

See Reference [5

Common channel implementations with SM return loss
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MPI Penalty for D=0.5 and D=0.6

Table 7: MPI Penalty for Discount Factor D=0.5 and D=0.6. Also shown is upper
bound (D=1), for comparison. D includes D;, which accounts for varying amplitudes
of PAM interference terms, and D>, which accounts for channel insertion loss.

Cases Fiber E n Rt Rr Rc Pmpi Pmpi Pmpi
D=05 D=06 D=1.0

Single-Link duplex 4.5 -26 -26  -26 0.66 0.80 1.43
duplex 4.5 26 -26  -35 0.27 0.32 0.55
parallel 4.5 20 -26 -45 0.28 0.34 0.58

-26 -26  -35 0.49 0.60 1.05
-20 -26  -45 0.36 0.44 0.75

Double-Link  duplex 4.5
parallel 4.5

Triple-Link duplex 4.5
parallel 4.5

-26 -26  -35 0.79 0.97 1.76
-20 -26  -45 0.45 0.54 0.95

oo (A~ INNDN
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Statistical Model and Simulation I

» Independently, a spreadsheet-based statistical model using the
Monte Carlo simulation technique has been developed.

> It is capable of modeling 12 reflectance points that can be
specified individually, including PMD reflectance at each end
of the link.

» It is available for sharing. See reference [6]

> Filename is king_02_.0116_smf.7z. It's a 7z zipped file which
extracts to about 27M and then needs to be extended by
duplicating the bottom row of the spreadsheet.
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PAM4 Cartoon — What the Statistical Model Does

» Partial error probabilities are calculated for each signal
modulation level and its adjacent thresholds, and used to
derive a Q penalty due to MPI.

ignores rise fall time and jitter effects,

just looks at time centre of eye Signal with
df of noise
Threshold 3 — —_ _—— . — —_——— -
Threshold 2
Threshold 1
No MPI with MPI with MPI
If MPI raises signal: If MPI lowers signal:
Partial error Higher probability Higher probability of
probabilities of errors against errors against

threshold 2, lower threshold 1, lower

for upper and lower >
against threshold 1 against threshold 2

thresholds
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Snapshot
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Link Model Cases Considered

€C1L C2 € € € € €7 €8 €9 Cl0 C11 C12
55 55
55 55 55
S2a
D1 55 55 55 55 HEE
D2
D2a
T 55 55
720 S5 55 55 55 55 55 55 55
T2a

Same channel model diagram as shown on page 18.
Single-Link: S1, S2 (4x55 dB), S2a (4x 35 dB)
Double-Link: D1, D2 (6x55 dB), D2a (6x35 dB)
Triple-Link: T1, T2 (8x55 dB), T2a (8x35 dB)

ER 4.5 dB, 0 dB link loss

vVvyVvYVvyy
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Single-Link S1

B ) o0o) oo -iooo) oo -iooo] -to00] -5

1.E+00

probability

1.E-02

0.00 100
MPI penalty dB

Ta ble 8: MPI Penalty, dB, for Single-Link S1. 2 connectors at -35 dB, 2 connectors at -55 dB, PMD at -26
dB, zero insertion loss, ER 4.5 dB. Monte Carlo high confidence is defined as 99.9999%

Worst-Case  High-Confidence

Upper Bound, D=0.5 0.27
Upper Bound, D=1.0 0.55
Monte Carlo 0.59 0.25
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Double-Link D1

-35] -1000) 35| -35]  -1000) -35)

1E+00

cumulative
probability

1E-02

1E-03 - \

\

0.00 1.00 2.00
MPI penalty dB

N enalty, , for Double-Lin . 4 connectors at -35 , 4 connectors at -55 , at -
Table 9 MPI Penalty, dB, for Double-Link D1 35 dB dB, PMD 26
dB, zero insertion loss, ER 4.5 dB. Monte Carlo high confidence is defined as 99.9999%

Worst-Case  High-Confidence

Upper Bound, D=0.5 0.49
Upper Bound, D=1.0 1.05
Monte Carlo 1.17 0.52
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Triple-Link T1

1E+00

cumulative
probability

1E-02
1E03 - \ T
1E-04 - \

0.00 1.00 2.00 3.00
IMPI penalty dB

Ta ble 10 MPI Penalty, dB, for Triple-Link T1. 6 connectors at -35 dB, 4 connectors at -55 dB, PMD at -26
dB, zero insertion loss, ER 4.5 dB. Monte Carlo high confidence is defined as 99.9999%

Worst-Case  High-Confidence

Upper Bound, D=0.5 0.79
Upper Bound, D=1.0 1.76
Monte Carlo 1.93 0.90

IEEE 802.3bs Jan 2016 26



D, vs. Loss Location

[ &} oz a3
T Rt———F—+—}——[J——Rr Rx
. Rc_-‘<Rc_-'<Rc_~

v

In Appendix C, we derive D, for evenly distributed loss.

v

Now let’s consider the case where loss is not evenly distributed. For
convenience, take n = 3 connectors.

» By counting each reflection separately, it can be shown that:

wy
I

V R:Rr(c1oa3) + v/ ReRe(1+ a1 +a102) + vV R Re(1+ az + azas3) + Re(2+ )

&/
and D} = 5?

v

For evenly distributed load, oy = ap = a3 and D} = Dy

v

Let's consider 4 cases of loss location.
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D; vs. D, for n=3

Table 11: Comparison of D> and D}, to illustrate the effect of location of
attenuation in the link. ChlL 6 dB, n=3, connector discrete reflectance -35 dB, PMD
reflectance -26 dB.

Loss Location a1 an as D> D;
Left 0.25 1.00 1.00 0.58 0.63
Right 1.00 1.00 0.25 0.58 0.63
Middle 1.00 025 1.00 0.58 0.61

Distributed 063 0.63 0.63 0.58 0.58

» D} is about 10% greater than D, in the corner case of all channel loss being
concentrated at either end of the link.

» It can be shown that this effect is milder for smaller channel loss and better
connector reflectance.

» We now show that Monte Carlo simulations corroborate this.
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Effect of Loss Location: 4 dB IL

T w/c (with no IL)

1.6
15 = T w/c distrib'd IL

14 m_ > |

= w/c (with lumped IL)

PMPI

Stat MPI (1e-6) no IL

= 7 stat MPI (1e-6) distrib'd IL

B 5tat MPI (1e-6) lumped IL

1 2 3 4 5 6 7 8 9 10 11
section

R1|R2|R3 | R4|Rs | R6 | R7T | R& [ RY [RI0[RII[RT
B EEEREREN - | -

» Solid lines: x axis denotes the link segment number where loss is localized.

» Dotted lines: Show results based on distributed insertion loss.
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Effect of Loss Location: 6.3 dB IL

13 w/c (with no IL)

15 = = distrib'd ILw/c

Pyp 12 ==/ (with lumped IL)
11 ’m
1]

0.9 Stat MPI (1e-6) no IL

= 7 Stat MPI (1e-6) distrib'd IL

0.2 B stat MpI (1e-6) lumped 1L

1 2 3 4 5 6 7 8 9 10 11
section

R1 [ R2| R3 [ R4 [ RS |"R6 |"R7 | R8 | R9 [RI0O|RII|RT2
o EE s s s s EE sl
» For links where channel loss is in the span closest to PMD, a slightly higher
allocation of MPI penalty may be necessary.

» See Appendix D for MPI Penalty plots of various cases.
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Conclusion

» We presented an analytic approximation of MPI penalty using discounted upper
bound. We also presented Monte Carlo simulations for various cases of interest.

» Discounted upper bound and Monte Carlo simulations represent two views of

the same problem, with two different perspectives and methods. They present a

range
'S

>

of values of MPI penalty.

Discounted upper bound is based on fixed PAM3 level of transmitted
signal but varying interfering amplitudes, and fixed worst-case phases.
Monte Carlo assumes both transmitted and interfering signals have
varying amplitudes and phases.

For zero insertion loss, a range of D = 0.5 (matching Monte Carlo at
99.9999% confidence) to D = 0.8 (D; = 0.8, D> = 1) is a good starting
point of consideration for estimating MPI| penalty.

More practically, for nonzero insertion loss, this range can be lowered to,
say, D=0.4to D =0.6.

Both methods confirm that there is some dependence on where the
insertion loss is concentrated.
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Appendix A: Summary of Equations

MPI Penalty, dB = 10 log4( - x) (1)
x=D(m— 1)45(L) (2)

E—1
s:\/ﬁ+n\/ﬁ+n\/ﬁ+w& (3)
D= DD, (4)
o= 2+ (S

n| vy

D, = (6)

A 1—
§=VRR: Voo + <

O (VR + VRR) +Re [ —— + =L (1)
« l—«

(1—a)

a: transmission coefficient of a link segment, E: extinction ratio, m: number of
PAM levels, n: number of connectors, Rc, R:, R,: reflectance values of

connectors, transmitter and receiver, respectively.
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Appendix B: Derivation of D1 (Amplitude Discount)

» For upper bound, we had assumed B; = A4, V), for PAM4, in received field
u(t) = Bpelw't + ZLV:1 VR2B, ei(wt+)

> Let's change that to By = A4, and By, k € [1, N], equally likely from
{A1, Az, A3, As}, with probability % each. Transmitted pulse is still of highest
amplitude, but interfering pulses can have any of the 4 PAM4 amplitudes.

E: Extinction Ratio

P4, A4 Py =P e p o p
Py = Pr(P55) = Pt (550 = Pu(552)
"""""""""""""""""""""""" PRA3 = 4 (PSP = py (268
,,,,,,,,,,,,,,,, p2, a2 Pa=EP1 s0 A2 = EA;2
This leads to
P1, Al ) 5
Al=VPi=A1o=, Ay =VP = A4\/7
0 VvE

Az =/Ps = A /3L A= VP = A,

%(A1+A2+A3+A4) Asg(z +/ 52 +V5E +1)
“Di=3(F=+ /52 +5EE+
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Appendix C: Derivation of D2 (Attenuation Discount)

S B
[
[
"

reflections

Tx 3 J Rx

j

1
\ : i

'

! /://E, > 1 reflection
i i i |
' N - ___—— .
! I ! > n reflections
1 ' 1 1
' ' 1 '
A E— >! n reflections
| ; : |

]
' : ! > n(n-1)/2

v |
' ' ' '
! N ! !

> Signal travels forth, crossing n connectors

» An interfering term sloshes around — forth, back, and forth — traveling through
additional segments, relative to the victim.

> Calculation of S can be replaced with § to explicitly model the additional
attenuation.
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Derivation of D2

Total additional loss of a reflected path scales directly with the number of connectors
between the interfaces at which the reflections occur. Assume « is the transmission
coefficient, and is the same for each segment (loss is evenly distributed). It is the
result of a combination of connector insertion loss and fiber attenuation.

Dzzgwhere
$ = VRR Var+
\/ﬁ'(1+\/c?+\/o7’+---+\/m)+
\/ﬁ.(l+\/o7+m+...+¢m)+
VReRe - ((n=1) + (0= 2)VaZ 4 - + Vo202
which simplifies to

§ = VRR, Vo + =20 (VRRe + VRR) + Re - (125 + 255k )

(1-a)?
Other, simpler approximations of D, are possible.
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Appendix D: Simulation Plots for Various Cases
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Simulation Plots for Various Cases
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Simulation Plots for Various Cases

4 dB just after Tx
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Simulation Plots for Various Cases
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Simulation Plots for Various Cases

6.3 dB distributed
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Simulation Plots for Various Cases

6.3 dB just after Tx
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