Pre-FEC BER Monitoring Proposal

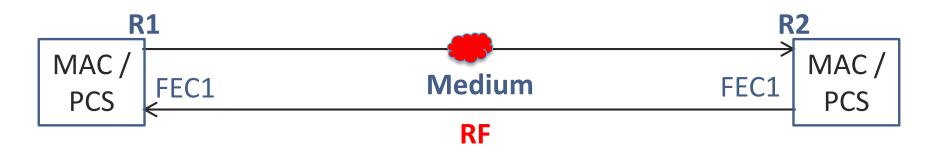
David Ofelt – Juniper Networks Gary Nicholl – Cisco

Contributers

• Jeffery Maki – Juniper Networks

Supporters

- Tom Issenhuth Microsoft
- Michael Lyngbøl TDC
- Xinyuan Wang Huawei
- Tong Tong Wang Huawei


Background & History

- For a longer introduction and motivation:
 - See maki_3bs_01a_1115.pdf from the 2015-11 Dallas meeting
- BIP8 added to 802.3ba to track bit errors on the wire
 - Added counters but no policy or signaling mechanism
 - Customers requested features to monitor BER •
 - Receive notification when BER above a user-defined threshold
 - Signal in band to the transmit MAC when the receiver's BER passed a threshold
 - Customer can use these notifications to manage their network better
 - Ex: Router with the Transmit MAC could trigger a re-route before the link became too degraded
 - Added in non-interoperable proprietary ways by multiple vendors

FEC-Enabled Opportunity

- FEC provides an opportunity to improve on this functionality
 - Pre-FEC BER can show link health before packet errors are even seen on the link
 - Customers are requesting the ability to:
 - Declare a link as failed at a user-settable threshold
 - Declare a link as degraded at a user-settable threshold and then signal the transmit side
 - These signals need to be carried through a FEC change in the extender sublayer (XS)
- Adding these features to the standard allows for interoperability and a consistent feature set.

Pre-FEC Fault Example

- Receive MAC in R2 detects pre-FEC count above the fault threshold
- RF sent to transmit MAC in R1
- Interface brought down

Pre-FEC Degrade Example

- Receive MAC in R2 detects pre-FEC count above the degrade threshold
- Remote Degrade (RD) signal sent to the transmit MAC in R1
- Traffic not affected

grade threshold R1

Pre-FEC Degrade Example with XS

- Receive XS at R2 detects pre-FEC error above degrade threshold
- Receive XS at R2 signals Receive MAC using LD (Local Degrade)
- MAC in R2 signals a RD (remote degrade) to the MAC in R1. The RD signal is regenerated by both the XS in R2 and in R1.
- Packet traffic not affected

nreshold Degrade) R1. The RD

How to count BER

- There are existing per-lane counters for RS symbol errors
 - In 802.3bs these are in: 45.2.3.47a,b
 - Proposal is to use symbol errors as proxy for bit-errors
- Can use FEC codeword/block as the unit of time
 - 5440 bits for KP4 == 12.8ns
- Specific BER set by specifying a threshold for the number of errors in a given number of FEC blocks.
 - Ex a BER of 1e-5 using a 10ms window is 42,483 errors in 781k FEC blocks
- This is how the hi_ser functionality in 802.3bj (91.5.33) works.
 - .3bj has a fixed interval of 8192 codewords and fixed thresholds of 417/6380 for KR4/KP4

Pre-FEC Fault

- Essentially a generalization of the hi-ber functionality
 - If receiver detects Fault_{threshold} errors in Fault_{interval} codewords it declares the link down
- This is very similar to the hi_ser functionality in 802.3bj (91.5.33)
- No new signaling necessary to inform transmitter
 - Receive side decides it is over threshold and generates LF
 - Normal mechanisms turn around LF and send RF to other end
- If FEC in XS goes over the fault threshold it can signal with LF/RF as appropriate.

Pre-FEC Degrade

- If receiver counts Degrade_{threshold} errors in Degrade_{interval} codewords it declares the link degraded
- Receiver signals the transmitter using new signaling mechanism
 - XS FEC transitions participate
- New signaling bits Local/Remote Degrade
 - Spiritually similar to LF/RF
 - Receiver MAC turns around LD and sends RD
 - Proposal is to put them in the alignment marker fields
 - Limits min detection time to ~100us
- No policy attached to degrade
 - Status reported through register and system is responsible for what actions are taken
- Degrade detect is very similar to the hi_ser calculation in 802.3bj (91.5.33)
 - Policy and signaling are different than in 802.bj

Summary of Proposal

- Optional Feature
- Add new configuration registers:
 - Fault_{threshold}
 - Fault_{interval}
 - Degrade_{threshold}
 - Degrade_{interval}
- Add new state:
 - Fault_{count}
 - Degrade_{count}
- State machines:
 - Fault tracking
 - Degrade tracking

- Alignment marker bits
 - Local Degrade (LD)
 - Remote Degrade (RD)
- Ability bits
 - Fault Threshold Ability
 - Degrade Threshold Ability
- Receiver turns around LD and transmits RD
- Add new status bits
 - Local Fault_{count} above Fault_{threshold}
 - Local Degrade_{count} above Degrade_{threshold}
 - LD detected in Alignment Marker
 - RD detected in Alignment Marker

Fault_{threshold} ove Degrade_{threshold} nent Marker nent Marker

, bility d LD and

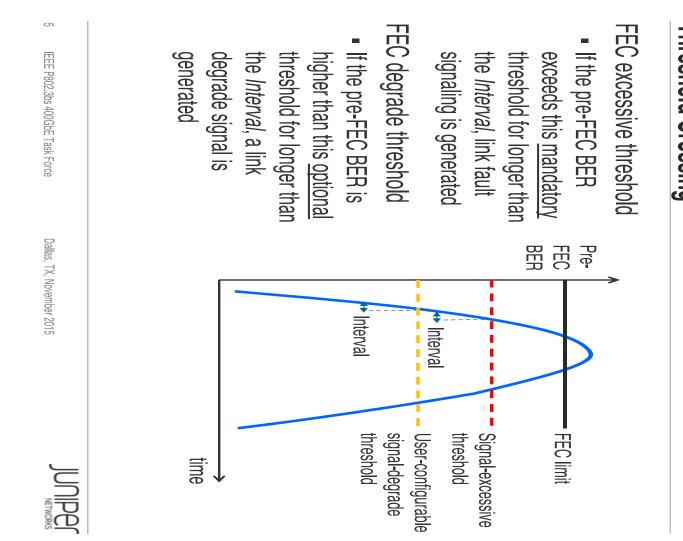
Next Steps

- Decide Consensus
- Put together detailed comments against D1.2

Straw Poll

- I support the addition of the optional pre-FEC BER degrade feature proposed in ofelt_3bs_01a_0116.pdf.
- (vote for one)
 - Yes 24
 - No 0
 - Abstain 14

Thanks!



Thresholds

- Two thresholds:
 - Degrade
 - Error
- Configurable Values for:
 - Threshold
 - Interval
- Sensitivity can be controlled by averaging over a longer or shorter period

From maki_3bs_01a_1115.pdf

Threshold Crossing