Revisit MPI Penalties for 400GBASE-FR8/LR8 Links

Winston Way and Trevor Chan NeoPhotonics, USA

IEEE802.3bs, January 2016

- Based on worst statistical MPI measurement and simulation results, provide inputs to the following "TBD" parameters for 400GbE-FR8 and –LR8 links in IEEE802.3bs/D1.1:
 - Table 123-7: Transmitter reflectance (max) in dB
 - Table 123-8: Receiver reflectance (max) in dB
 - Table 123-9: Maximum discrete reflectance in dB

Worst case MPI setup for 28Gbaud PAM4

Simulates perfect phase and polarization match among multiple MPI

BER vs. OMA curve for MPI Measurement

Equivalent MPI Power when Using Power or Field Addition

NeePhotonics

Very Different Connector RL Requirements for Field or Power Addition Assumptions

(Field addition)

(Power addition)

NeePhotonics

Monte Carlo Simulation

- Assuming random phase, amplitude, and polarization

MPI using a Monte Carlo Simulation

Signal: $Ae^{-i\phi}\hat{u}$

Monte Carlo simulation of MPI – Case 3 Example

- 6 connectors: -26 dB RL
- TOSA/ROSA: -26 dB RL
- More than 2 reflections are considered negligible
- Random phase and polarization from each double reflection
- MPI generates random interfering amplitudes for amplitude levels 2, 3 and 4

<u>Analytical</u> -Field addition = -23.1 dB (worst case) -Power addition = -37.5 dB

Monte Carlo (40000 samples considered)

-Interference with highest PAM4 amplitude

- Maximum x-talk power = -26.5 dB
- Average x-talk power = -38.0 dB

-Random Amplitude

- Maximum x-talk power = -30.7 dB
- Average x-talk power = -43.0 dB

Worst-case Monte Carlo simulation result is a more realistic condition

Measurement of Statistical, Accelerated MPI

- Phase randomness
- Amplitude randomness
- <u>Accelerated</u> polarization randomness

Measurement System

- 84K consecutive symbols @ 28 GBaud measured for each acquisition period of 3µs (~30 100GBase-KP4 FEC frames)
- Unlike PAM4 IC chip which reports BER average over a period of about 1sec, here every the BER average period is shortened to 3μ s
- The worst 3μ s-period BER in an 8-hour period is reported

Experimental setup

 Fibers are suspended and a big fan was turned on to accelerate the state of polarization changes
<u>8 hour SOP measurement</u>

- 50% SOP decorrelation time used to quantize fiber sway (OFC 2001 ThA3)
 - Accelerated case: 0.8s average (probability distribution shown on the right)
 - Static case: >> 8 hours
 - Acceleration factor >> 36000x

50% SOP Decorrelation Times

NeePhoton

8 hours under the fan represents >> 26 years of static operation

Case 1: -26 dB ROSA & TOSA, -35 dB Jumpers

Case 3: -26 dB ROSA & TOSA, -26 dB Jumpers

Summary

- Measurement sampling taken for consecutive 84000 symbols, no missing burst event
- Average of 8 hours (under strong vibration on jumper cables) per measured data point
 - Each data point represents >> 25 years of normal operation
- Observations
 - Case 1 (connector RL=-35dB, TX/RX RL=-26dB) with negligible power penalty is a very safe conclusion - with 6 LC connectors (if MPO connectors with -55dB RL are added, the effect should be small)
 - Case 3 (connector RL=-26dB, TX/RX RL=-26dB) with <1dB power penalty @ BER=2e-4 is also a very safe conclusion - with 6 LC connectors (if MPO connectors with -55dB RL are added, the effect should be small)
 - * <0.3dB penalty (@ BER=2e-4) from MPI under 8-hour accelerated polarization randomness
 - * Extrapolation from simulations shows under -14dBm receiver sensitivity, with 100x longer time than our >>25 year representative experiment

Thank You!

