Considerations for CDR Bandwidth Proposal

Fernando De Bernardinis, Carlo Pinna

Marvell Italy
Supporters

• Ali Ghiasi - Ghiasi Quantum LLC
Comments addressed

- Comment 93 CRU BW for 400Gbase-DR4
- Comment 94 stress receiver sensitivity for 400Gbase-DR4
- Comment 95 CRU BW for CDAUI-8
- Comment 96 stress receiver sensitivity for CDAUI-8
- Comment 103 CRU BW for CDAUI-8
- Comment 104, 105 for clause 120D
- Comment 106 module stress receiver sensitivity for CDAUI-8
- Comment 109-115 for clause 120E
CRU Bandwidth in existing Standards

Let’s group the latest standards by speed and modulation:

• NRZ 10Gb/s is fb/2578 → 4 MHz
• NRZ 25Gb/s is fb/2578 → 10 MHz
• PAM4 25Gb/s is 2.12 MHz
 – also includes a loop delay of 28.6ns

OIF proposals for 56G:

• CEI 56G LR and VSR: fb/8496 → 3.13 MHz

In Atlanta, there was a proposal by Ali Ghiasi to lower the requirements on CDR/CRU bandwidth to ease receiver implementations

• This presentation will provide some more data in support
CDR Loop and rms Jitter

• Let’s consider a number of TX PLL phase noise plots as available from published material
 – As published at ISSCC (2013, 2014, 2015 and 2016)

• The rms jitter is computed in several ways:
 – Use a first order high pass filter, sweep the corner frequency on the x-axis
 – Plot golden PLL results, and a realistic CDR with latency
 • Second order loop, 10ns latency, pole separation 5x or complex with chi=0.707

• Objective:
 – Support the proposal to set a CDR bandwidth somewhere between 2 and 4 MHz
 – Not only golden PLL improvements are negligible, but realistic CDR implementation actually deliver worse performance
RX Jitter and CDR Loop

- CDR loop tracks TX phase
 - Jitter is rejected with a high pass transfer function

- Higher bandwidth improves performance
 - Exploit corner frequency to lower requirements on TX

- Latency limits bandwidth related improvements
 - Peaking after -3dB corner
 - DSP particularly sensitive to it
RX Jitter and Second order CDR Loop

- CDR with complex poles are more sensitive to latency
 - Higher peaking
 - Larger noise emphasis after corner frequency
 - Digital implementation more complex to limit latency

- We should account for practical limitations in CDR high frequency rejection capabilities

![Jitter Transfer Function](image1)

![Jitter TF with corner at 8 MHz vs. latency, complex poles](image2)
How to read the following plots

• Phase noise data are filtered with a high pass filter with corner frequency as specified in the x axis.

• The resulting spectral density is integrated to compute rms and plotted on the y axis.

• For any point in the plot, the x axis specifies the corner frequency and the y axis the total filtered jitter.
 - Different filter shapes are applied, CDR latency is modeled.
CDR Loop and rms Jitter

Source: ISSCC 2013

Paper D2.3

- A Sub-2W 39.8-to-44.6Gb/s Transmitter and Receiver Chipset with SFI-5.2 Interface in 40nm CMOS
 - PLL operating range: 19.9-22.3 GHz
 - RMS jitter: 1kHz-320MHz 0.12 ps

- Negligible improvement with higher corner frequency

- CDR Latency Implementation starts at 2 MHz
CDR Loop and rms Jitter

Source: ISSCC 2014 Paper 2.2

- A 780mW 4 × 28Gb/s Transceiver for 100GbE Gearbox PHY in 40nm CMOS
 - PLL operating range: 10-14 GHz
 - RMS jitter: 10kHz-100MHz 0.16 ps
- Marginal improvement increasing corner
 - Low absolute levels (<150 fs)
- CDR Latency Implementation starts at 1 MHz
CDR Loop and rms Jitter

Source: ISSCC 2015 Paper 10.9

- A 13.1-to-28GHz Fractional-N PLL in 32nm SOI CMOS with a ΔΣ Noise-Cancellation Scheme
 - PLL operating range: 13.1-28 GHz
- Negligible improvement with higher corner frequency
 - Low bandwidth PLL makes large corner frequency useless
CDR Loop and rms Jitter

Source: ISSCC 2016 Paper 3.4

- **A 40/50/100Gb/s PAM-4 Ethernet Transceiver in 28nm CMOS**
 - PLL operating range: 9.9-15.5 GHz
 - RMS jitter: 1kHz-100MHz 0.181 ps

- Marginal improvement increasing corner
 - Low absolute levels (<150 fs)

- CDR Latency Penalty starts at 1-2 MHz
Conclusions

From state of the art published PLLs, we can observe:

• Jitter as measured at TX through high pass filter show marginal improvements in measured jitter

• Jitter as expected to be experienced by a real CDR show negligible improvements above 2 MHz

Therefore, we expect a small improvement in jitter performance with higher corner frequency above 2-3 MHz to be questionable with respect to the increased implementation complexity and power consumption that is implied.
Thanks.