

shaping tomorrow with you

Comment #18 T-Coil Model for COM

Yasuo Hidaka Fujitsu Laboratories of America, Inc. IEEE P802.3bs 400GbE Task Force May 25-27, 2016 IEEE 802.3 interim meeting

IEEE P802.3bs 400GbE Task Force

Supporters

- Toshiaki Sakai (Socionext)
- Geoff Zhang (Xilinx)
- Scott A. Irwin (MoSys)
- Rajinder Cheema (Socionext)
- Tomoyuki Arai (Independent)
- Richard Mellitz (Intel)
- Upen R. Kareti (Cisco Systems)
- Phil Sun (Credo Semiconductor)

Comment #18

Comment Type TR Comment Status D

The device capacitance C_d of 0.28pF causes too much reflection in COM model.

Just a lump capacitor is too simple and does not represent actual device characteristics with T-Coil (Termination Coil) which is commonly used in many actual devices at this high data rate.

SuggestedRemedy

Add T-Coil to the COM model.

A presentation to propose the detail model and parameters of T-Coil for COM will be given at the Task Force meeting in May 2016.

Overview

- T-Coil is not new. There is no secret.
 - US Patent 3,155,927 in 1964 [1]
- This proposal is a simple bridged-T T-Coil model that has been commonly used.
- For any given device capacitance C_d, we can always derive ideal parameter values that makes Z_{in} (the input impedance of the device) resistive for all frequencies.
 - Perfect matching with ideal parameter values: Too good for real devices.
- Parameter values are intentionally deviated from ideal values.
 Make it realistic.

T-Coil has been known in public >50 years Fujirsu

US Patent 3,155,927 "Bridged-T Termination Network" issued in 1964 [1]

Nov. 3, 1964

T. T. TRUE

3,155,927

BRIDGED-T TERMINATION NETWORK

Filed Sept. 12, 1960

T-Coil Model [1,2]

$$\Gamma_1 = \Gamma_2 = \frac{Z_{in} - R_0}{Z_{in} + R_0}$$

Ideal T-Coil Parameters $Z_{in} = R_0$ at all frequencies, when $k_L = \frac{4\zeta^2 - 1}{4\zeta^2 + 4}$

$$k_{L} = \frac{4\zeta - 1}{4\zeta^{2} + 1}$$

$$C_{B} = \frac{C_{d}}{16\zeta^{2}}$$

$$L_{1} = L_{2} = \frac{C_{d}R_{0}^{2}}{4} \left(1 + \frac{1}{4\zeta^{2}}\right)$$

$$R_{d} = R_{0}$$

 ζ : damping ratio of V_X/I_{in}

Locations of complex poles of V_X/I_{in}

FUJITSU

Equivalent Circuits [3]

De-couple L_1 and L_2

From π model to T model

FUJITSU

Equations of Impedance Calculations

$$L_{M} = -k_{L}\sqrt{L_{1}L_{2}}$$

$$L_{1M} = L_{1} - L_{M}$$

$$L_{2M} = L_{2} - L_{M}$$

$$Z_{C_{B}} = 1/j\omega C_{B}$$

$$Z_{C_{d}} = 1/j\omega C_{d}$$

$$Z_{L_{1M}} = j\omega L_{1M}$$

$$Z_{L_{2M}} = j\omega L_{2M}$$

$$Z_{L_{M}} = j\omega L_{M}$$

$$Z_{\pi} = Z_{C_{B}} + Z_{L_{1M}} + Z_{L_{2M}}$$

$$Z_{T_{1}} = Z_{C_{B}}Z_{L_{1M}}/Z_{\pi}$$

$$Z_{T_{2}} = Z_{C_{B}}Z_{L_{2M}}/Z_{\pi}$$

$$Z_{X} = Z_{T_{M}} + Z_{L_{M}} + Z_{C_{d}}$$

$$Z_{in} = Z_{T_{1}} + \frac{\left(R_{d} + Z_{T_{2}}\right)Z_{X}}{R_{d} + Z_{T_{2}} + Z_{X}}$$

$$Z_{out} = Z_{T_{2}} + \frac{\left(R_{0} + Z_{T_{1}}\right)Z_{X}}{R_{0} + Z_{T_{1}} + Z_{X}}$$

IEEE P802.3bs 400GbE Task Force

FUJITSU

Voltage Transfer Function at Rx Input [1,2] Fujirsu

Voltage Transfer Function at Tx Output [4] Fujitsu

Parameters of T-Coil Model for COM

FUĴITSU

Doromotor	Symbol	Curront	Ideal	Propose	d Values	- Units
Farameter	Symbol	Current	Ideal	Test 1	Test 2	Units
Package transmission line length	z _p			12	30	mm
Single-ended reference resistance	R ₀	50	50	5	0	ohms
Single-ended termination resistance	R _d	55	50	50 * 1.10	50 * 0.90	ohms
Single-ended device capacitance	C _d	2.8x10 ⁻⁴	6x10 ⁻⁴	6x10 ⁻⁴	* 0.85	nF
T-coil bridge capacitance	C_B	N/A	5x10 ⁻⁵	5x10⁻⁵	* 1.15	nF
T-coil inductance on pad side	<i>L</i> ₁	0	500	50	00	pН
T-coil inductance on terminator side	L ₂	0	500	50	00	рН
T-coil coupling coefficient	k _L	N/A	0.50	0.	50	_

Justification for proposed values

- \blacksquare C_d is approximately doubled to take account of parasitic cap of T-Coil
- Tolerance is chosen by common sense in electrical engineering
 - Inductance is easy to control
 - It depends on permeability and large loop area which are both not sensitive to variation
 - Capacitance is difficult to control
 - It depends on permittivity and small electrode gap which are both sensitive to variation
- Sign of deviation is chosen to be the worst case (slide 14-15)

Rx/Tx Reflection Characteristics with T-Coil Fujirsu

Rx Transfer Characteristics with T-Coil

FUITSU

Tx Transfer Characteristics with T-Coil

FUITSU

Study for Sign of Deviations

Simulation Conditions (Difference from Draft D1.3 Annex120D)

Parameter	Symbol	Units	Optimal	Simulation Conditions
Single-ended reference resistance	R ₀	ohms	50	50
Single-ended termination resistance	R _d	ohms	50	50 * (0.90 or 1.10)
Single-ended device capacitance	C _d	fF	600	600 * (0.90 or 1.10)
T-coil bridge capacitance	C_B	fF	50	50 * (0.90 or 1.10)
T-coil inductance on pad side	L_1	рН	500	500
T-coil inductance on terminator side	L ₂	рН	500	500
T-coil coupling coefficient	k_L	_	0.50	0.50

10 Tested Channels

- CH1 through CH7 are from mellitz_3bs_01_0714.pdf
- CH8 is from shanbhag_02_0914.pdf
- CH9 and CH10 are from mellitz_3bs_01_0315.pdf

2 Test Cases

Package Trace Length: $z_p = 12mm$ or 30mm

Results of Study for Sign of Deviations

- Worst case for Test 1 (zp=12mm)
 - Rd +10%, Cd -10%, CB +10%
- Worst case for Test 2 (zp=30mm)

■ Rd -10%, Cd -10%, CB +10%

FUÏTSU

Simulation Conditions (Difference from Draft D1.3 Annex 120D)

Con	dition			No T-coil	Llaita					
Capacito	r tolerance	0%	5%		Units					
	R_0		50							
	R _d	55 for Te	st 1 (z _p =12	55	ohms					
	C_d	600	570	280	fF					
Symbol	C_B	50.0	52.5	55.0	57.5	60.0	0	fF		
	L ₁			0	рН					
	L_2			0	рН					
	k_L			0.50			0	_		

- 10 Tested Channels
 - CH1 through CH7 are from mellitz_3bs_01_0714.pdf
 - CH8 is from shanbhag_02_0914.pdf
 - CH9 and CH10 are from mellitz_3bs_01_0315.pdf
- 2 Test Cases
 - Package Trace Length: $z_p = 12mm$ or 30mm

Results of Study for Capacitor Tolerance

Condition	Capacitor		Test 1 (zp=12mm)									
Condition	tolerance	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH10	AVG
	0%	4.58	5.11	5.16	4.30	3.54	4.93	4.84	5.95	3.62	4.46	4.65
	5%	4.55	5.06	5.12	4.28	3.53	4.90	4.79	5.94	3.58	4.41	4.61
With T-coil	10%	4.51	5.03	5.02	4.24	3.47	4.82	4.73	5.89	3.50	4.36	4.56
	15%	4.42	4.94	4.86	4.15	3.43	4.71	4.62	5.86	3.39	4.29	4.47
	20%	4.35	4.85	4.63	4.08	3.38	4.59	4.48	5.80	3.24	4.18	4.36
No T-coil		4.04	4.12	3.13	3.70	3.12	4.04	3.39	5.58	2.45	3.63	3.72
Improveme	ent(CT15%)	0.38	0.82	1.73	0.45	0.31	0.67	1.23	0.27	0.94	0.65	0.75

Test 1 (zp=12mm)

With T-Coil

■ CH1 ■ CH2 ■ CH3 ■ CH4 ■ CH5 ■ CH6 ■ CH7 ■ CH8 ■ CH9 ■ CH10 ★ AVG

CT 10% CT 15% CT 20%

6.0 5.5 5.0

(ap) 4.5 4.0 3.5

> 3.0 2.5 2.0

> > CT 0%

CT 5%

Condition	Capacitor		-	-	٦	est 2	(zp=3	30mm)			
Condition	tolerance	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	AVG
	0%	4.15	4.63	4.99	3.86	3.31	4.67	4.63	5.66	3.33	4.23	4.34
	5%	3.97	4.36	4.78	3.61	3.14	4.51	4.44	5.48	3.12	4.05	4.14
With T-coil	10%	3.73	4.07	4.60	3.35	3.00	4.33	4.27	5.29	2.89	3.87	3.94
	15%	3.51	3.76	4.40	3.07	2.83	4.12	4.09	5.05	2.65	3.64	3.71
	20%	3.25	3.44	4.15	2.76	2.63	3.90	3.88	4.81	2.39	3.43	3.46
No T-coil		3.29	3.34	3.15	2.77	2.43	3.38	3.16	4.67	2.12	3.00	3.13
Improveme	ent(CT15%)	0.21	0.42	1.25	0.29	0.39	0.73	0.94	0.39	0.53	0.65	0.58

FUjitsu

No T-Coil

Simulation Conditions (Difference from Draft D1.3 Annex 120D)

Con	dition		With T-coil								No T-coil	
Device Ca	apacitance	1pF 900fF 800fF 700fF 600fF 500fF 400fF 300fF										Units
	R ₀		-	-	5	0	-		-	50		ohms
	R _d	55 fo	55 for Test 1 (z_p =12mm), 45 for Test 2 (z_p =30mm)								5	ohms
	C _d	850	765	680	595	510	425	340	255	280	100	fF
Symbol	C_B	95.8	86.3	76.7	67.1	57.5	47.9	38.3	28.8	()	fF
	L ₁	833	750	667	583	500	417	300	250	()	pН
	L_2	833	833 750 667 583 500 417 300 250)	pН
	k_L		0.50)	_

10 Tested Channels

- CH1 through CH7 are from mellitz_3bs_01_0714.pdf
- CH8 is from shanbhag_02_0914.pdf
- CH9 and CH10 are from mellitz_3bs_01_0315.pdf

2 Test Cases

Package Trace Length: z_p = 12mm or 30mm

Results of Study for Device Capacitance

FUjitsu

Condition	Device				Т	est 1	(zp=1	2mm)			
Condition	capacitance	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	AVG
	1.0pF	4.72	4.74	3.95	4.44	3.79	4.49	4.08	5.47	3.26	4.25	4.32
	900fF	4.71	4.97	4.29	4.46	3.77	4.73	4.36	5.80	3.34	4.44	4.49
	800fF	4.65	5.01	4.60	4.37	3.66	4.79	4.51	5.95	3.43	4.43	4.54
With	700fF	4.52	4.98	4.80	4.25	3.53	4.76	4.63	5.93	3.42	4.36	4.52
T-coil	600fF	4.42	4.94	4.86	4.15	3.43	4.71	4.62	5.86	3.39	4.29	4.47
	500fF	4.42	4.94	4.88	4.14	3.38	4.71	4.63	5.83	3.39	4.25	4.46
	400fF	4.45	5.00	4.95	4.17	3.44	4.80	4.68	5.94	3.49	4.34	4.53
	300fF	4.51	5.04	4.93	4.22	3.47	4.82	4.70	6.02	3.47	4.34	4.55
	280fF	4.04	4.12	3.13	3.70	3.12	4.04	3.39	5.58	2.45	3.63	3.72
	100fF	4.53	4.92	4.50	4.19	3.53	4.74	4.45	6.11	3.42	4.39	4.48

	100fF	4.53	4.92	4.50	4.19	3.53	4.74	4.45	6.11	3.42	4.39	4.48	
Condition	Device		Test 2 (zp=30mm)										
Condition	capacitance	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH10	AVG	
	1.0pF	3.35	3.47	3.00	3.07	2.44	3.27	2.99	4.39	2.12	3.01	3.11	
	900fF	3.39	3.45	3.38	3.02	2.53	3.45	3.31	4.59	2.19	3.19	3.25	
	800fF	3.36	3.47	3.68	2.94	2.59	3.69	3.53	4.77	2.32	3.33	3.37	
With	700fF	3.37	3.55	4.02	2.93	2.66	3.85	3.79	4.85	2.45	3.47	3.49	
T-coil	600fF	3.51	3.76	4.40	3.07	2.83	4.12	4.09	5.05	2.65	3.64	3.71	
	500fF	3.76	4.11	4.75	3.33	3.04	4.43	4.42	5.42	2.95	3.91	4.01	
	400fF	4.21	4.71	5.18	3.88	3.38	4.85	4.81	5.83	3.43	4.33	4.46	
	300fF	4.30	4.79	5.07	3.97	3.41	4.91	4.77	5.88	3.47	4.35	4.49	
	280fF	3.29	3.34	3.15	2.77	2.43	3.38	3.16	4.67	2.12	3.00	3.13	
	100fF	3.89	4.23	4.50	3.50	2.98	4.29	4.22	5.43	2.99	3.80	3.98	

- Define equations in slide 7 and parameters in slide 10 Replace (93A-17) with the following equation $\Gamma_1 = \Gamma_2 = \frac{Z_{in} - R_0}{Z_{in} + R_0}$ Replace (93A-18) with the following equations $H_{21}(f) = H_{21}^{(TX)} \frac{s_{21}(f)(1 - \Gamma_1)(1 + \Gamma_2)}{1 - s_{11}(f)\Gamma_1 - s_{22}(f)\Gamma_2 + \Gamma_1\Gamma_2\Delta S(f)} H_{21}^{(RX)}$ $H_{21}^{(TX)} = \frac{2R_0 Z_X}{(Z_{out} + R_d)(R_0 + Z_{T_1} + Z_X)}$ $H_{21}^{(RX)} = \frac{2Z_{C_d}(R_d + Z_{T_2})}{(Z_{in} + R_0)(R_d + Z_{T_2} + Z_X)}$
- In Figure 93A-1, replace R_d at Tx with $H_{21}^{(TX)}$ and Γ_1 , and replace R_d at Rx with $H_{21}^{(RX)}$ and Γ_2

Proposed Text Changes

93A.1.2.2 Two-port network for a shunt capacitance

- Remove the description for S^(d) in the last paragraph, because it is not referenced from anywhere. The last sentence in 93A.1.2.2 will be as follows:
 - The scattering parameters for the board capacitance C_p are denoted as $S^{(p)} = S(C_p)$.

93A.1.2.4 Assembly of Tx and Rx device package models

Change the text as follows:

The scattering parameters for the transmitter device package model $S^{(tp)}$ are the result of the cascaded connection of the package transmission line and board capacitance as defined by Equation (93A-15):

 $S^{(tp)} = cascade(S^{(l)}, S^{(p)})$ (93A-15)

Similarly, the scattering parameters for the receiver device package model $S^{(rp)}$ are the result of the cascaded connection of the board capacitance and package transmission line as defined by Equation (93A-16):

$$S^{(tp)} = cascade(S^{(p)}, S^{(l)})$$
(93A-16)

Prior Clauses using COM

Do we get the same results when we bypass T-Coil model?

Actually, they are not exactly same as before.

However, the difference is quite small and negligible.

Bypassed T-Coil Model

FUITSU

Old COM vs Bypassed T-Coil Model

Tx (Old COM)

Rx (Old COM)

FUITSU

$$S_{11} = \frac{Z_{C_d}(R_d - R_0) - R_d R_0}{Z_{C_d}(R_d + R_0) + R_d R_0}$$
$$S_{21} = \frac{Z_{C_d}(R_d + R_0)}{Z_{C_d}(R_d + R_0) + R_d R_0}$$

 $\mathbf{Rx} (Bypassed T-Coil)$ $\Gamma_2 = \frac{Z_{C_d}(R_d - R_0) - R_d R_0}{Z_{C_d}(R_d + R_0) + R_d R_0}$ $H_{21}^{(RX)} = \frac{2Z_{C_d} R_d}{Z_{C_d}(R_d + R_0) + R_d R_0}$

With bypassed T-Coil, gain is slightly reduced.

Impact on COM by Bypassed T-Coil Model Fujirsu

Test Case	COM definition	CH1	CH2	CH3	CH4	CH5
Test 1	Old (No T-Coil model)	4.03 <mark>813</mark>	4.11 <mark>665</mark>	3.128 <mark>61</mark>	3.700 <mark>49</mark>	3.12 <mark>241</mark>
z _p =12mm	New (Bypassed T-Coil)	4.03 <mark>674</mark>	4.11 <mark>506</mark>	3.128 <mark>45</mark>	3.700 <mark>00</mark>	3.12 <mark>171</mark>
Test 2	Old (No T-Coil model)	3.29 <mark>391</mark>	3.34 <mark>486</mark>	3.15 <mark>213</mark>	2.77 <mark>763</mark>	2.43 <mark>508</mark>
z _p =30mm	New (Bypassed T-Coil)	3.29 <mark>229</mark>	3.34 <mark>358</mark>	3.15 <mark>156</mark>	2.77 <mark>459</mark>	2.43 <mark>403</mark>

Test Case	COM definition	CH6	CH7	CH8	CH9	CH10
Test 1	Old (No T-Coil model)	4.041 <mark>91</mark>	3.389 <mark>60</mark>	5.58 <mark>406</mark>	2.44 <mark>744</mark>	3.63 <mark>506</mark>
z _p =12mm	New (Bypassed T-Coil)	4.04127	3.389 <mark>40</mark>	5.58 <mark>292</mark>	2.44 <mark>629</mark>	3.63 <mark>455</mark>
Test 2	Old (No T-Coil model)	3.38 <mark>557</mark>	3.155 <mark>67</mark>	4.66 <mark>904</mark>	2.11 <mark>688</mark>	2.99 <mark>678</mark>
z _p =30mm	New (Bypassed T-Coil)	3.38497	3.155 <mark>47</mark>	4.66 <mark>607</mark>	2.11 <mark>536</mark>	2.99 <mark>598</mark>

□ CH1 through CH7 are from mellitz_3bs_01_0714.pdf

□ CH8 is from shanbhag_02_0914.pdf

□ CH9 and CH10 are from mellitz_3bs_01_0315.pdf

COM is slightly (< 0.003dB) reduced due to reduction of gain.</p>

The impact on existing clause is negligible small.

Summary

- I have presented a new T-Coil model for COM.
 - All the detail formula are given for ease of review and implementation.
 - Device capacitance C_d is doubled to account for parasitic cap of T-Coil.
 - Parameter values are deviated from the ideal values based on common sense in electrical engineering.
- A comparison with real T-Coil characteristics is not available for review due to confidentiality.
 - If you can access real T-Coil characteristics, please do your own comparison.
 - If there is S-parameter data of real T-Coil characteristics that is public or OK to release results to public, I can show a comparison.
- For prior clauses using COM, the impact of bypassing the T-Coil model is negligible.

Options to improve the package model of COM FUITSU

Option A

- Use the new T-Coil model in this presentation.
 - Parameters are chosen based on common sense in electrical engineering.
 - We can revise parameters, if comparison with real T-Coil becomes available.

Option B

- Reduce the device capacitance C_d to an equivalent lower value.
 - Contribution of comparison with real T-Coil may be desired for justification.

Option C

No change.

References

- [1] Thomas T. True, "Bridged-T Termination Network," U.S. Patent 3155927, Nov. 1964.
- [2] Sherif Galal, Behzad Razavi, "Broadband ESD Protection Circuits in CMOS Technology," IEEE J. of Solid-State Circuits, Vol. 38, No. 12, Dec. 2003, pp. 2334-2340.
- [3] S. C. Dutta Roy, "Comments on "Analysis of the Bridged Tcoil Circuit Using the Extra-Element Theorem"," IEEE Trans. on Circuits and Systems – II: Express Briefs, Vol. 54, No. 8, Aug. 2007, pp. 673-674.
- [4] Marcel Kossel, et. al., "A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in 65 nm Bulk CMOS With < –16 dB Return Loss over 10 GHz Bandwidth," IEEE J. of Solid-State Circuits, Vol. 43, No. 12, Dec. 2008, pp. 2905-2920.

Thank you