

Comment #41: Effects of the change from Np=13 to Np=200

Yasuo Hidaka Fujitsu Laboratories of America, Inc.

IEEE P802.3bs 200GbE and 400GbE Task Force San Antonio, November 7-9, 2016

Background

Np was changed from 13 to 200 in Draft D2.1.

- A larger Np value increases the steady-state voltage v_f, because a longer fillted pulse will capture more long-term ISI.
 On the other hand, peak of the fillted pulse does not change.
- As a result, the ratio of the linear fit pulse peak to v_f is reduced.
- In order to keep the requirement for Tx same, we should adjust v_f and the ratio of the linear fit pulse peak to v_f consistently with the change to Np.
- This presentation is an updated version of hidaka_01_102416_elect.pdf which was presented at electric ad hoc on October 24, 2016

Simulated Model

Test fixture:

• A:
$$|S_{21}| = 10^{-(EQ93-1)/20}$$
, $\angle S_{21} = \text{minimum phase}(|S_{21}|)$

- B: 38mm Host PCB trace using EQ93A-13,14 with Table 92-12
- Scope terminator: $S_{21} = 1$, $S_{11} = 0$ (i.e. ideal)
- Scope filter: 4-th order Bessel-Thomson LPF with 33GHz 3dB BW
 - $\omega_0 = 98.28967142447435 \text{ G rad/s}$

Simulation Methodology

- 1. Get S_{21} of the entire model from 1MHz to f_{max} with 1MHz step
 - $f_{max} = 26.5625$ GHz × $M \div 2$, where M = 32
- 2. Get a single-bit pulse response
- 3. Get a linear cycle response of PRBS13Q with ideal levels
- 4. Cancel the DC offset of the linear cycle response of PRBS13Q
- Get a non-linear cycle response of PRBS13Q by gain expansion / compression (similar to a methodology in healey_3bs_02_0916)
 Simulated from 1 0dB to 11 0dB with 0 2dB stop
 - Simulated from -1.0dB to +1.0dB with 0.2dB step
- 6. Get V0, V1, V2, and V3 per 120D.3.1.2.1
- 7. Get Vmid, ES1, and ES2 per 120D.3.1.2
- 8. Get ES=(ES1+ES2)/2 per 120D.3.1.3
- 9. Get linear fit pulse p(k) and error e(k) per 120D.3.1.3, 94.3.12.5.2, 85.8.3.3.5
 - Dp=2 and Np=13 or 200
- 10. Get steady-state voltage v_f and linear fit pulse peak p_{max} per 120D.3.1.4
- **11.** Get σ_e from e(k), then get SNDR per 120D.3.1.6
 - σ_n is always set to $p_{max} \times 10^{(-50/20)}$ (i.e. -50dB) to have noise floor

Simulated Package Parameters

The following 10 combinations of parameters were simulated

Case	Zp Package trace length	Rd Termination resistance	Zc Package trace impedance		
	Fackage liace lengin	Termination resistance	Fackage trace impedance		
#1	12 mm	45 0	<mark>85</mark> Ω		
#2		45 12	<mark>115</mark> Ω		
#3		55 O	<mark>85</mark> Ω		
#4			115 Ω		
#5		45.0	<mark>85</mark> Ω		
#6	30 mm	45 \2	115 Ω		
#7	30 mm	55 0	<mark>85</mark> Ω		
#8		55 12	<mark>115</mark> Ω		
#9	12 mm	50.0	100.0		
#10	30 mm		100 22		

- Device capacitor: Cd = 280 fF
- Package capacitor: Cp = 110 fF

Values in red were updated from hidaka_01_102416_elect.pdf with correct parameters

TDR of Entire Path from Scope (zp=12mm) Fujirsu

SBR of Entire Path (zp=12mm)

TDR of Entire Path from Scope (zp=30mm) Fujirsu

SBR of Entire Path (zp=30mm)

Level separation mismatch ratio R_{LM}

SNDR (zp=12mm)

Improved as expected

For the linear case, we can see the noise floor (50dB in this simulation)

SNDR (zp=30mm)

- Less dependent on package parameters as expected
 - For the linear case, we can see the noise floor (50dB in this simulation)

Linear Fit Pulse Peak p_{max} (zp=12mm)

Almost no effect

The average effect was 0.00049%

Linear Fit Pulse Peak p_{max} (zp=30mm)

Almost no effect

■ The average effect was 0.0012%

Steady-State Voltage v_f (zp=12mm)

Non-negligible increase

Becaise a longer fitted pulse captures more long-term ISI

Steady-State Voltage v_f (zp=30mm)

Non-negligible increase

Becaise a longer fitted pulse captures more long-term ISI

Ratio of p_{max} to v_f (zp=12mm)

FUĴITSU

Reduced a lot

Because v_f increases while p_{max} does not change

Ratio of p_{max} to v_f (zp=30mm)

FUĴITSU

Reduced a lot

Because v_f increases while p_{max} does not change

Linear Fit Pulse p(k)

■ p(k) does not change for $k \le 13^*M$ between Np=13 and Np=200

Linear Fit Pulse p(k) (zoomed)

p(k) does not change for k ≤13*M between Np=13 and Np=200

Revised Simulation Results

#	Description	TF	TF IL @ 12.89GHz	Np	vf	pmax (min)	Av, Afe, Ane	zp	Rd	Zc
1	Old spec (min)		1.2~1.6dB	13	0.4V (min)	0.736 * vf	0.45V	30mm		
2	Old spec (max)		1.2~1.6dB	13	0.6V (max)		0.63V	12mm		
3	Check old spec	в	1.5770dB	13	0.4V (min)	0.738102 * vf	0.44914V	30mm	55Ω	85Ω
4			1.5770dB	13	0.6V (max)		0.64446V	12mm	55Ω	85Ω
5	Check old spec	A	1.4049dB	13	0.4V (min)	0.743455 * vf	0.44519V	30mm	55Ω	85Ω
6			1.4049dB	13	0.6V (max)		0.64415V	12mm	55Ω	85Ω
7	Revised spec with anchored Av		1.4049dB	200	0.4206V (min)	0.707112 * vf	€ 0.44519V	30mm	55Ω	85Ω
8		A	1.4049dB	200	0.6108V (max)		0.64415 √	12mm	55Ω	85Ω
9	Revised spec	A	1.4049dB	200	€0.4V (min)	0.707112 * vf	0.42342V	30mm	55Ω	85Ω
10			1.4049dB	200	€ 0.6V (max)		0.63275V	12mm	55Ω	85Ω

Test Fixture

- A: Reference Insertion Loss EQ93-1 with minimum phase and Zdiff=100Ω
- B: 38mm Host PCB trace (Zdiff=109.8Ω) using EQ93A-13,14 with Table 92-12
- #3~#10 are simulated with Cd=280fF, Cp=110fF, Gaussian Filter (Tr=13ps) and 4-th order Bessel-Thomson LPF with 33GHz 3dB bandwidth

Conclusion

- Suggested remedy of comment #41 updated w/ correct parameters (changes based on simulation results #7 and #8)
 - Change the Steady state voltage v_f (max) from 0.6 V to 0.611 V
 - Change the Steady state voltage v_f (min) from 0.4 V to 0.421 V
 - Change the Linear fit pulse peak (min) from 0.736 x v_f to 0.707 x v_f
 - Update the following COM parameters
 - Av and Afe from 0.45V to 0.445V
 - Ane from 0.63V to 0.644V

Or, another remedy based on simulation results #9 and #10

- Change the Linear fit pulse peak (min) from 0.736 x v_f to 0.707 x v_f
- Change Av and Afe from 0.45V to 0.423V
- Change Ane from 0.63V to 0.633V
 - Keep $v_{\rm f}$ (max) as 0.6V and $v_{\rm f}$ (min) as 0.4V

Thank you