

# Mitigating Interaction Problems of Impedance Matching between Channel and Rx (#r02-10/14/55)

Yasuo Hidaka Fujitsu Laboratories of America, Inc.

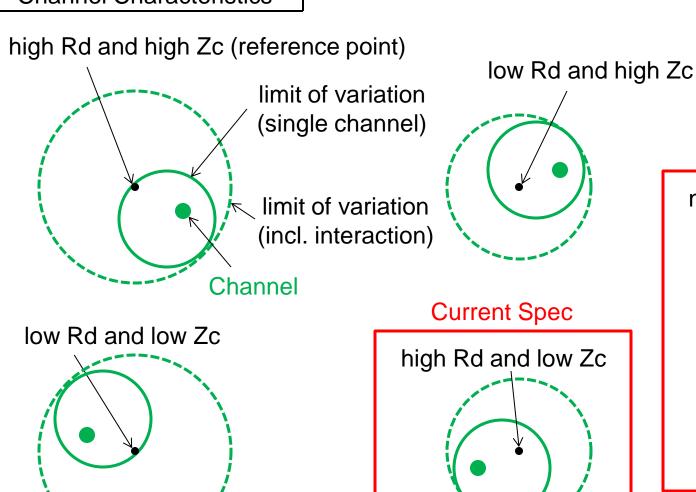
IEEE P802.3bs 200GbE and 400GbE Task Force July 10-11, 2017 IEEE 802.3 Plenary Meeting

#### Overview

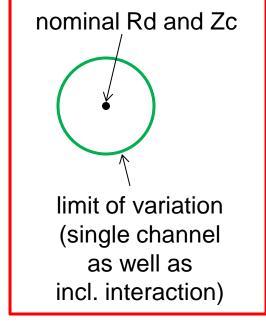


- Interaction Problems of Z Matching between Channel and Rx
  - Difficult to test Channel in the worst case for <u>unknown</u> Rx impedance
  - Difficult to test Rx in the worst case for <u>unknown</u> Channel impedance
    - Impedance matching significantly affects the performance (e.g. COM value)
    - Impedance variation is inevitable in actual manufacturing
  - These problems have been discussed in P802.3cd since last November
- Two Proposals to Mitigate these Problems (need both)
  - Use nominal values for COM impedance parameters (i.e. Rd and Zc)
    - Tighten Channel Variation
  - Specify return loss (RL) of test channel for Rx Interference Tolerance Test
    - Tighten Rx Variation
    - Ensure some margin for interoperability
- This presentation is a summary of three presentations in Ad Hoc
  - hidaka\_061417\_3cd\_01\_adhoc.pdf : nominal values for COM Z parameters
  - hidaka\_061417\_3cd\_02\_adhoc-v2.pdf, hidaka\_070517\_3cd\_01\_adhoc.pdf:
    RL of test channel for Rx ITT

#### Nominal Values for COM Z Parameters (Rd, Zc) FUITSU




- Regardless of whether interoperability margin is enough or not, there are problems to use high Rd and low Zc
  - Problems to use high Rd and low Zc
    - It is not the worst case at all
    - It is biased positive (favoring) to some channels, negative (penalizing) to some channels, and neither positive nor negative to many channels
      - It increases variation of channel characteristics, degrading margin for interoperability
    - It gives misleading impression and illusion of max impedance tolerance
  - Advantages to use nominal Rd and nominal Zc
    - It is not biased to any channels
      - It reduces variation of channel characteristics, improving margin for interoperability
    - It gives a warning that max impedance tolerance is not specified
- COM value will be slightly adjusted so that change of Rd and Zc generally will not affect pass/fail status of existing channels


#### Tightening Variation by Nominal Reference



Hyper Space of Channel Characteristics



#### **Proposal**



#### Return Loss (RL) of Test Channel for Rx ITT



- In Clause 93, RL of test channel for Rx ITT was specified to meet EQ (93-2)
  - EQ (93-2) is RL of test fixture, that is rather good
  - With good RL of test channel, broadband noise (BBN) is always injected
  - Overstress of BBN may be one reason of ample interoperability margin of existing 25G NRZ SerDes
    - BBN (a.k.a. Gaussian noise) has infinite range of noise-amplitude distribution
    - Reflection and crosstalk have limited range of noise-amplitude distribution
- Lack of RL spec of test channel for Rx ITT may seriously degrade interoperability margin of 50G PAM4 SerDes
- Since we defined RL of test channel as test-fixture grade for Clause 93, we should do the same in Annex 120D, Clause 137, and Clause 136
  - It is also feasible, because we just re-use the same RL mask

#### Conclusion



- Proposal 1 : Use nominal Rd and Zc values
  - Adjust Ave, Afe, Ane not to change vf value at TP0a
  - Adjust Channel COM generally not to affect pass/fail of existing channels

|             | Annex 120D | Clause 137 | Clause 136 |
|-------------|------------|------------|------------|
| Rd          | 50 Ω       | 50 Ω       | 50 Ω       |
| PKG Zc      | 95 Ω       | 95 Ω       | 95 Ω       |
| PCB Zc      | N/A        | N/A        | 100 Ω      |
| Av          | 0.418 V    | 0.415 V    | 0.415 V    |
| Afe         | 0.418 V    | 0.415 V    | 0.415 V    |
| Ane         | 0.604 V    | 0.604 V    | 0.604 V    |
| Channel COM | 3.1dB      | 3.0dB      | 3.3dB      |

- Proposal 2 : Specify return loss of test channel for Rx ITT by
  - EQ (93-2) for Annex 120D and Clause 137
  - EQ (92-38) for Clause 136



#### Back up Slides

- Effects of nominal Rd and Zc values on COM values
  - Simulation results not to affect pass/fail of existing channels
  - Reported in hidaka\_061417\_3cd\_01\_adhoc.pdf

#### COM Parameters for Annex 120D (Common)



| Table 93A-1 parameters |                     |         | 1/                  | I/O control              |                              |         | Table 93A–3 parameters  |                        |       |  |
|------------------------|---------------------|---------|---------------------|--------------------------|------------------------------|---------|-------------------------|------------------------|-------|--|
| Parameter              | Setting             | Units   | Information         | DIAGNOSTICS              | 1                            | logical | Parameter               | Setting                | Units |  |
| f b                    | 26.5625             | GBd     |                     | DISPLAY WINDOW           | 0                            | logical | package tl gamma0 a1 a2 | [0 1.734e-3 1.455e-4]  |       |  |
| f min                  | 0.05                | GHz     |                     | Display frequency domain | 1                            | logical | package tl tau          | 6.141E-03              | ns/mm |  |
| Delta f                | 0.01                | GHz     |                     | CSV REPORT               | 1                            | logical | package Z c             | 90                     | Ohm   |  |
| C d                    | [1.8e-4 1.8e-4]     | nF      | [TX RX]             | RESULT DIR               | .\results\V165 {date}\       |         | 1 3 = =                 |                        |       |  |
| z p select             | [1]                 |         | [test cases to run] | SAVE FIGURES             |                              |         | Table                   | Table 92–12 parameters |       |  |
| z_p (TX)               | [30]                | mm      | [test cases]        | Port Order               | [1324]                       |         | Parameter               | Setting                |       |  |
| z_p (NEXT)             | [12]                | mm      | [test cases]        | RUNTAG                   | V164                         |         | board_tl_gamma0_a1_a2   | [0 4.114e-4 2.547e-4]  |       |  |
| z_p (FEXT)             | [30]                | mm      | [test cases]        | Rec                      | eiver testing                |         | board_tl_tau            | 6.191E-03              | ns/mm |  |
| z_p (RX)               | [30]                | mm      | [test cases]        | RX_CALIBRATION           | 0                            | logical | board_Z_c               | 110                    | Ohm   |  |
| С_р                    | [1.1e-4 1.1e-4]     | nF      | [TX RX]             | Sigma BBN step           | 5.00E-03                     | V       | z_bp (TX)               | 151                    | mm    |  |
| R_0                    | 50                  | Ohm     |                     | IDEAL_TX_TERM            | 0                            | logical | z_bp (NEXT)             | 72                     | mm    |  |
| R_d                    | [55 55]             | Ohm     | [TX RX]             | T_r                      | 1.30E-02                     | ns      | z_bp (FEXT)             | 72                     | mm    |  |
| f_r                    | 0.75                | *fb     |                     | T_r_meas_point           | 0                            | logical | z_bp (RX)               | 151                    | mm    |  |
| c(0)                   | 0.6                 |         | min                 | T_r_filter_type          | 1                            | logical |                         |                        |       |  |
| c(-1)                  | [-0.15:0.05:0]      |         | [min:step:max]      |                          |                              |         |                         |                        |       |  |
|                        |                     |         |                     | Non stand                | Non standard control options |         |                         |                        |       |  |
| c(1)                   | [-0.25:0.05:0]      |         | [min:step:max]      | INC_PACKAGE              | 1                            | logical |                         |                        |       |  |
| g_DC                   | [-15:1:0]           | dB      | [min:step:max]      | IDEAL_RX_TERM            | 0                            | logical |                         |                        |       |  |
| f_z                    | 10.625              | GHz     |                     | INCLUDE_CTLE             | 1                            | logical |                         |                        |       |  |
| f_p1                   | 10.625              | GHz     |                     | INCLUDE_TX_RX_FILTER     | 1                            | logical |                         |                        |       |  |
| f_p2                   | 53.125              | GHz     |                     | COM_CONTRIBUTION         | 0                            | logical |                         |                        |       |  |
| A_v                    | 0.44                | V       |                     |                          |                              |         |                         |                        |       |  |
| A_fe                   | 0.44                | V       |                     |                          |                              |         |                         |                        |       |  |
| A_ne                   | 0.63                | V       |                     |                          |                              |         |                         |                        |       |  |
| L                      | 4                   |         |                     |                          |                              |         |                         |                        |       |  |
| M                      | 32                  |         |                     |                          |                              |         |                         |                        |       |  |
| N_b                    | 10                  | UI      |                     |                          |                              |         |                         |                        |       |  |
| b_max(1)               | 0.5                 |         |                     |                          |                              |         |                         |                        |       |  |
| b_max(2N_b)            | 0.2                 |         |                     |                          |                              |         |                         |                        |       |  |
| sigma_RJ               | 0.01                | UI      |                     |                          |                              |         |                         |                        |       |  |
| A_DD                   | 0.02                | UI      |                     |                          |                              |         |                         |                        |       |  |
| eta_0                  | 2.60E-08            | V^2/GHz |                     |                          |                              |         |                         |                        |       |  |
| SNR_TX                 | 31                  | dB      |                     |                          |                              |         |                         |                        |       |  |
| R_LM                   | 0.95                |         |                     |                          |                              |         |                         |                        |       |  |
| DER_0                  | 1.00E-05            |         |                     |                          |                              |         |                         |                        |       |  |
|                        | Operational control |         |                     |                          |                              |         |                         |                        |       |  |
| COM Pass threshold     | 3                   | dB      |                     |                          |                              |         |                         |                        |       |  |
| Include PCB            | 0                   | Value   | 0, 1, 2             |                          |                              |         |                         |                        |       |  |
|                        |                     |         |                     |                          |                              |         |                         |                        |       |  |
| g_DC_HP                | [-4:1:0]            |         | [min:step:max]      |                          |                              |         |                         |                        |       |  |
| f_HP_PZ                | 0.6640625           | GHz     |                     |                          |                              |         |                         |                        |       |  |

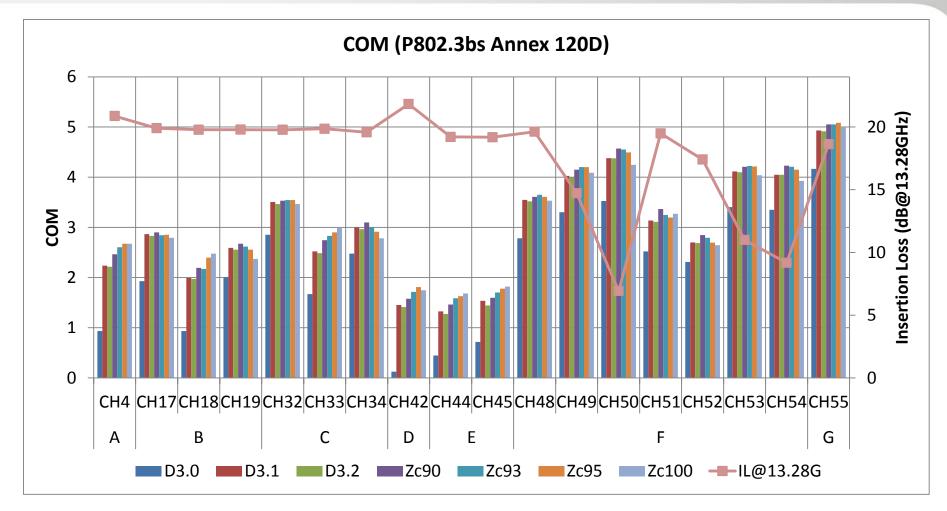
Yellow cells were changed as the following slide

#### COM Parameters for Annex 120D (Difference)



- Based on slide 9 of hidaka\_060717\_3cd\_adhoc-v2.pdf
  - Tx Amplitude for Zc90/93/95/100 were calibrated at TP0a

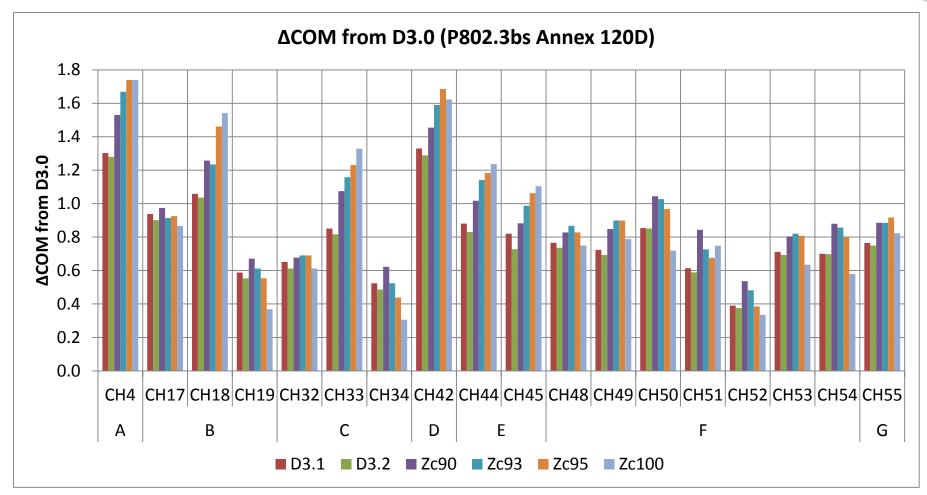
| Label | D3.0   | D3.1   | D3.2   | Zc90   | Zc93   | Zc95   | Zc100  |
|-------|--------|--------|--------|--------|--------|--------|--------|
| R_d   | 55     | 55     | 55     | 50     | 50     | 50     | 50     |
| Z_c   | 85     | 90     | 90     | 90     | 93     | 95     | 100    |
| A_v   | 0.45   | 0.45   | 0.44   | 0.419  | 0.418  | 0.418  | 0.417  |
| A_fe  | 0.45   | 0.45   | 0.44   | 0.419  | 0.418  | 0.418  | 0.417  |
| A_ne  | 0.63   | 0.63   | 0.63   | 0.604  | 0.604  | 0.604  | 0.604  |
| C_d   | 2.8E-4 | 1.8E-4 | 1.8E-4 | 1.8E-4 | 1.8E-4 | 1.8E-4 | 1.8E-4 |
| f_p2  | 1E+99  | 2*f_b  | 2*f_b  | 2*f_b  | 2*f_b  | 2*f_b  | 2*f_b  |
| z_p   | 30     | 30     | 30     | 30     | 30     | 30     | 30     |


### 18 Channels for Simulation for Annex 120D FUJITSU



| Category | CH#      | IL 13.28G | Description             | Channel Data Source                                          |  |
|----------|----------|-----------|-------------------------|--------------------------------------------------------------|--|
| А        | 4        | 20.9dB    | Cisco Backplane         | P802.3cd 50/100/200GbE TF (Cisco_Backplane_channel_data.zip) |  |
| В        | 17,18,19 | ~20dB     | Intel 100Ω Backplane    | 50G/NGOATH Study Group                                       |  |
| С        | 32,33,34 | ~20dB     | Intel 85Ω Backplane     | (mellitz_01_021716_20dB_6_channels.zip)                      |  |
| D        | 42       | 21.8dB    | TE Backplane            | P802.3cd 50/100/200GbE TF (TEC_STRADAWhisper27in_Meg6_*.zip) |  |
| Е        | 44, 45   | ~19dB     | Cavium Backplane        | P802.3cd 50/100/200GbE TF (Cavium_20dB_H*.zip)               |  |
|          | 48       | 19.6dB    | Intel Mezzanine Channel |                                                              |  |
|          | 49       | 14.7dB    |                         |                                                              |  |
|          | 50       | 6.9dB     |                         |                                                              |  |
| F        | 51       | 19.5dB    |                         | P802.3bs 200/400GbE TF (mellitz_3bs_*_0714.zip)              |  |
|          | 52       | 17.4dB    |                         | (mome_oboerrinzip)                                           |  |
|          | 53       | 11.0dB    |                         |                                                              |  |
|          | 54       | 9.2dB     |                         |                                                              |  |
| G        | 55       | 18.6dB    | TEC ARMOR Mezzanine     | P802.3bs 200/400GbE TF (TEC/shanbhag_01_0914.zip)            |  |

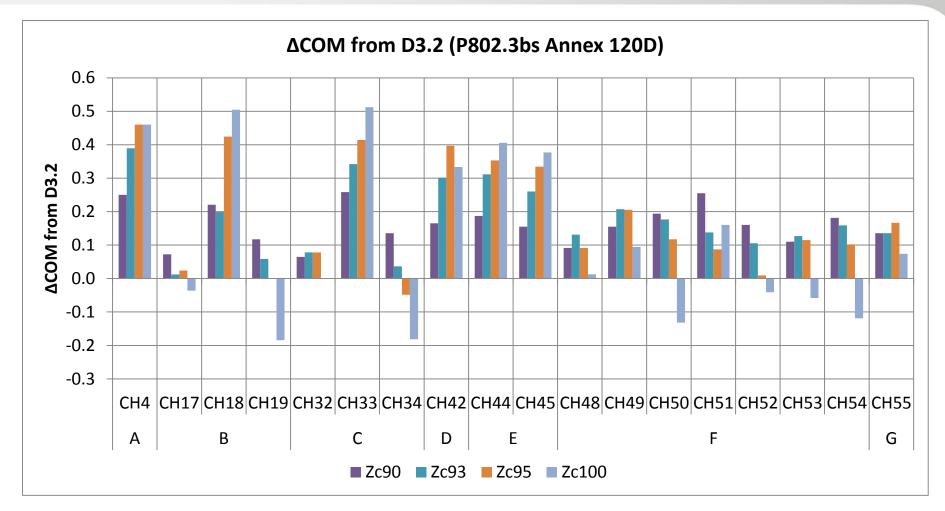
#### Results for Annex 120D






- F and G have one mezzanine connector (relevant for 120D)
- A thru E have two backplane connectors (only for information)

### Results for Annex 120D (△COM from D3.0)






- Large improvement (~0.8dB) mainly due to Cd (280fF→180fF)
  - Since COM was not changed, it was budget transfer from Rx to channel
- This is only for information, and not used for my proposal

### Results for Annex 120D ( $\triangle$ COM from D3.2) FUJITSU





- $\blacksquare$  Zc = 95 $\Omega$  and COM = 3.1dB seems a reasonable choice
  - Looking at the results of F and G which are relevant for Annex 120D
  - My proposal for Annex 120D is based on this result



## Thank you