IMPROVEMENTS TO CDAUI8 C2C TX LINEARITY SPECIFICATIONS

Magesh Valliappan IEEE 802.3bs 400Gb/s Task Force – Electrical Ad-hoc Dec. 7th, 2015

OVERVIEW

2

TX Linearity Specifications for CDAUI-8 c2c

- Measuring Level Mismatch Current method and Proposed changes
- R_{LM} and vertical asymmetry

Inherited from Clause 94 (100GBase-KP4) and referenced by TX SNDR & R_{LM}

- Measure TX Linearity Test Pattern to obtain V_A, V_B, V_C, V_D
- Calculate ES₁ & ES₂ (to allow for asymmetric inner PAM4 data levels) and R_{LM}

- Measure PRBS13Q
- Calculate SNDR, p(k) using an assumption that data levels are (-1,-ES₁,ES₂,1)

FINDING ES1 & ES2

These equations result in some inaccuracy when ES₁!=ES₂

- The 4 levels are assumed to be [-1,-ES₁,ES₂,+1]. Starting from there, if you generate V_A, V_B,V_C,V_D and calculate ES₁ & ES₂, it results in a different answer.
- ES₁ & ES₂ definition assumes outer levels are equal, so re-centering should use V_{avg} = (V_A+V_D)/2 to address this

A change worth considering is to derive ES₁ & ES₂ from PRBS13Q instead

- Current method focuses only on DC pattern, ignoring transition levels. Including all patterns would provide a more representative average estimate of level asymmetry.
- All the information needed is present in PRBS13Q measurement, making the test more efficient.
- Proposal : Use a best fit method (least square error criteria) with the PRBS13Q data to estimate ES1 and ES2. The test flow would be like -
 - Measure PRBS13Q waveform
 - Assume symbol values of [-1,-1/3,1/3,+1] and follow procedure in 85.8.3.3.5 to find "P" [equation 85-7]
 - (New step) Use Y & P to estimate adjusted levels ES₁ and ES₂ using least square error fit
 - Note for SNDR Use the new levels [-1, -ES₁, ES₂, +1] and continue, same as before.

RLM: ALLOWED VERTICAL ASYMMETRY

- The current R_{LM} definition allows large asymmetry between -1/3 and +1/3 levels, but was probably not intended
- ES1,ES2 @ (-20%, +10%) passes R_{LM}, but is considerably tighter on symmetric cases
 - This is a case where upper and middle eyes are smaller, while lower one is bigger

- Transmitters shouldn't need such a large allowance, and it ends up adding a burden on RX for potentially hypothetical cases
 - R_{LM} may be defined to limit the inner levels to +/- margin around their ideal value
 - R_{LM} = 1-min(Abs(3*ES₁-1),Abs(3*ES₂-1))

