IMPROVEMENTS TO CDAUI8 C2C TX LINEARITY SPECIFICATIONS

Magesh Valliappan
IEEE 802.3bs 400Gb/s Task Force - Electrical Ad-hoc Dec. $7^{\text {th }}, 2015$

- TX Linearity Specifications for CDAUI-8 c2c
- Measuring Level Mismatch - Current method and Proposed changes
- $R_{\text {LM }}$ and vertical asymmetry

CDAUI-8 C2C CURRENT METHOD

- Inherited from Clause 94 (100GBase-KP4) and referenced by TX SNDR \& $\mathbf{R}_{\text {LM }}$
- Measure TX Linearity Test Pattern to obtain $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{D}}$
- Calculate $E S_{1} \& E S_{2}$ (to allow for asymmetric inner PAM4 data levels) and $R_{L M}$

$$
\begin{aligned}
& S_{\min }=\frac{\min \left(V_{\mathrm{D}}-V_{\mathrm{C}}, V_{\mathrm{C}}-V_{\mathrm{B}}, V_{\mathrm{B}}-V_{\mathrm{A}}\right)}{2} \\
& V_{\text {avg }}=\frac{V_{\mathrm{A}}+V_{\mathrm{B}}+V_{\mathrm{C}}+V_{\mathrm{D}}}{4} \\
& E S_{1}=\frac{V_{\mathrm{B}}-V_{\text {avg }}}{V_{\mathrm{A}}-V_{\text {avg }}} \\
& E S_{2}=\frac{V_{\mathrm{C}}-V_{\text {avg }}}{V_{\mathrm{D}}-V_{\text {avg }}} \\
& R_{\mathrm{LM}}=\frac{6 \cdot S_{\min }}{V_{\mathrm{D}}-V_{\mathrm{A}}}
\end{aligned}
$$

- Measure PRBS13Q
- Calculate SNDR, $\mathrm{p}(\mathrm{k})$ using an assumption that data levels are ($-1,-\mathrm{ES}_{1}, \mathrm{ES}_{2}, 1$)

FINDING ES1 \& ES2

- These equations result in some inaccuracy when ES_{1} !=ES ${ }_{2}$
- The 4 levels are assumed to be [-1,- $\mathrm{ES}_{1}, \mathrm{ES}_{2},+1$]. Starting from there, if you generate $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{D}}$ and calculate $\mathrm{ES}_{1} \& \mathrm{ES}_{2}$, it results in a different answer.
- $E S_{1} \& E S_{2}$ definition assumes outer levels are equal, so re-centering should use $V_{a v g}=\left(V_{A}+V_{D}\right) / \mathbf{2}$ to address this
- A change worth considering is to derive $E S_{1} \& E S_{2}$ from PRBS13Q instead
- Current method focuses only on DC pattern, ignoring transition levels. Including all patterns would provide a more representative average estimate of level asymmetry.
- All the information needed is present in PRBS13Q measurement, making the test more efficient.
- Proposal : Use a best fit method (least square error criteria) with the PRBS13Q data to estimate ES1 and ES2. The test flow would be like -
- Measure PRBS13Q waveform
" Assume symbol values of [-1,-1/3,1/3,+1] and follow procedure in 85.8.3.3.5 to find " P " [equation 85-7]
- (New step) - Use Y \& P to estimate adjusted levels ES_{1} and ES_{2} using least square error fit
- Note for SNDR - Use the new levels [-1, $\left.-\mathrm{ES}_{1}, E \mathrm{ES}_{2},+1\right]$ and continue, same as before.

RLM: ALLOWED VERTICAL ASYMMETRY

- The current R_{LM} definition allows large asymmetry between $-1 / 3$ and $+1 / 3$ levels, but was probably not intended
- ES1,ES2 @ (-20\%, +10\%) passes R_{LM}, but is considerably tighter on symmetric cases
- This is a case where upper and middle eyes are smaller, while lower one is bigger

- Transmitters shouldn't need such a large allowance, and it ends up adding a burden on RX for potentially hypothetical cases
- \mathbf{R}_{LM} may be defined to limit the inner levels to +/- margin around their ideal value
- $R_{L M}=1-\min \left(\operatorname{Abs}\left(3^{*} E S_{1}-1\right), A b s\left(3^{*} E S_{2}-1\right)\right)$

