

# Module TX eye measurement specification

**Raj Hegde & Magesh Valliappan** IEEE 802.3bs 400 Gb/s Task Force Electrical Ad-Hoc, May 9<sup>th</sup>, 2016

# **CDAUI-8 C2M Module output specification**

- Spec updated to include the module TX pre-cursor component
  - Keep the measurement point same as before at the MCB output
    - Approx. 3.5-4dB loss
  - Define a 'near-end' eye and a 'far-end' eye
- Near-end eye
  - Represents the short length case
  - Measured and post processed as before
- Far-end eye
  - In the post processing phase, include a 'loss channel' to represent the remainder of the loss budget
  - Update the eye-spec such that the TX would have to provide the desired precursor component



### Far-end eye: o/p measurement + post processing setup



- Component models adopted from Clause 92 & Annex 92A
- Total Loss:
  - 9.85dB @ 12.89GHz
- HCB-MCB Mated Pair:
  - TP3 to TP4
  - 3.59dB loss @ 12.8906 GHz
- Loss Channel (150mm long T-line):
  - 6.26dB loss at 12.8906GHz





Mated cable assembly and test point test fixture



# **Component Models Continued...**

- Actual HCB-MCB Mated Pair characteristics:
  - Insertion loss is 5.8dB @13.2812GHz
  - ~1dB worse than MTF max (4.8dB)
- Loss Channel:
  - Representative receiver PCB path (TP4 to TP5)
  - Model provided in 92.10.7.1.1
  - ~4.2dB loss at 13.2812GHz for 95mm
  - Total worst-case loss modeled: ~10.0dB
- Adjust the loss channel length to compensate for HCB-MCB loss variation





#### **Far-end eye parameters**

| Parameter  | Value  |
|------------|--------|
| ESMW       |        |
| Eye Width  | 180mUI |
| Eye Height | 25mV   |



