Alignment of Tx jitter specifications, COM, and Rx interference/jitter tolerance tests

Adee Ran

December 2016

Baseline

- In clauses/annexes that use COM for channel specifications, there are 3 coupled elements:
 - Transmitter specification
 - Receiver tolerance tests
 - COM parameters
- If these elements match, then a combination of Tx+channel+Rx (all compliant) should perform as expected
- Otherwise... there is either a hole in the budget or margin left on the table
 - E.g. compliant Tx, COM parameters match, but understressed Rx tolerance test: system performance not guaranteed
 - E.g. compliant Tx, compliant Rx, but COM overestimates jitter effect: channels that fail COM would still work

Comment #15

- There seems to be a mismatch SJ in the jitter tolerance test and the A_DD parameter.
- Looking at the precedence in 83D:
 - The channel is specified with COM parameter A_DD=0.05 (Table 83D–6), corresponding to 0.1 UI PtP. The transmitter specification has the same value allowed for effective DJ.
 - The SJ stress at high frequencies is 0.05 UI PtP (from Table 88–13).
 - This means the SJ stress is 50% lower than the maximum allowed for the transmitter; the test in 83D is understressed (unless the transmitter has intrinsic DJ of 0.05 UI PtP).
- In the current annex
 - The channel is specified with COM paremeter A_DD=0.02 corresponding to 0.04 UI PtP (the transmitter specification may not match this value; as noted in another comment)
 - The SJ stress at high frequencies is 0.05 UI PtP (Table 120D-7)
 - This means the SJ stress is 25% higher than the maximum allowed for the transmitter; the test is overtstressed (even if the transmitter has no intrinsic DJ).
- The SJ stress is supposedly based on the CRU bandwidth so all frequencies should be scaled similarly."

From Table 120D-7

Table 120D–7—200GAUI-4 and 400GAUI-8 receiver jitter tolerance parameters

Parameter	Case A	Case B	Case C	Case D	Case E	Units
PCS FEC Symbol error ratio	10 ⁻⁴	10-4	10-4	10-4	10-4	_
Jitter frequency	0.04	1.333	4	12	40	MHz
Jitter amplitude (pk-pk)	5	0.15	0.05	0.05	0.05	UI

• From Table 120D-8

Random jitter, RMS	σ_{RJ}	0.01	UI
Dual-Dirac jitter, peak	A _{DD}	0.02	UI

Comment #15 = cont.

- Suggested remedy:
 - Change table 120D-7 so that the SJ is 0.04 UI PtP at high frequencies (cases C, D and E), 0.12 UI for case B, and 4 UI for case A.
- Suggested Table 120D-7 change

Parameter	Case A	Case B	Case C	Case D	Case E	Units
PCS FEC Symbol error ratio	10-4	10-4	10-4	10-4	10-4	_
Jitter frequency	0.04	1.333	4	12	40	MHz
Jitter amplitude (pk-pk)	5	0.15	0.05	0.05	0.05	UI

Table 120D-7-200GAUI-4 and 400GAUI-8 receiver jitter tolerance parameters

Table 120D–7—200GAUI-4 and 400GAUI-8 receiver jitter tolerance parameters

Parameter	Case A	Case B	Case C	Case D	Case E	Units
PCS FEC Symbol error ratio	10-4	10-4	10-4	10-4	10-4	_
Jitter frequency	0.04	1.333	4	12	40	MHz
Jitter amplitude (pk-pk)	4	0.12	0.04	0.04	0.04	UI

Comment #29

- There seems to be a mismatch between the transmitter jitter specifications and the A_DD parameter.
- Looking at the precedence in 83D:
 - The maximum effective DJ allowance for the transmitter is 0.1 UI PtP (Table 83D–1)
 - The channel is specified with COM parameter A_DD=0.05 (Table 83D–6), corresponding to 0.1 UI PtP.
- In the current annex:
 - Transmitter DJ is not specified directly, but using equations 120D-9 and 120D-10 with the maximum specified J4 (0.118 UI) and JRMS (0.019 UI) yields A_DD=0.015 and sigma_RJ=0.011
 - The channel is specified with COM paremeter A_DD=0.02 and sigma_RJ=0.01.
- If the equations are correct, this means the channel specification assumes a significantly worse transmitter than what is actually allowed, and the transmitter specification may be relaxed.

Comment #29 – cont.

- Assuming the channels are an (informal) objective, we should not change the COM parameters.
- Suggested remedy: change the Tx jitter specifications.
 - Find J4, J_{RMS} and equations that would yield the same A_{DD} , σ_{RJ} used in COM
 - I am actively looking for such a combination...
- Can we assume that J4 and J_{RMS} cannot be at the maximum together?
 - If so this should be stated
 - I still don't have an example of values that yield the target A_{DD} , σ_{RJ}

Comment #30

- As a sanity check, I calculated what would happen with
 - A purely dual-dirac jitter (no RJ) causing the specified J4, and
 - A purely random jitter (no DD) causing the specified J_{RMS} (0.023 UI).
- In the first case, J4=0.0118 and J_{RMS} would be sqrt(0.0118)=0.109 (more than allowed...)
 - Plugging these values to equations 120D-9 and 120D-10 yields A_{DD} =0.1059 and σ_{RJ} =0.1917
 - Instead of the expected A_{DD}=0.0059 (J4/2) and $\sigma_{\rm RJ}=0$
- In the second case, JRMS is 0.023 and J4 would be 2*0.023*Q(1e-4/2)=0.18
 - plugging these values to equations 120D-9 and 120D-10 yields A_{DD} =0.0106 and σ_{RJ} =0.004; instead of the expected A_{DD} =0 and σ_{RJ} =0.023.

Q4	3.8906	
Input values		
J ₄	0.0118	
J _{RMS}	0.109	
Calcualted values		
A _{DD}	0.1059	120D–7
σ _{RJ}	0.1917	120D–8

Q4	3.8906	
Input values		
J ₄	0.18	
J _{RMS}	0.023	
Calcualted values		
A _{DD}	0.0106	120D–7
σ _{RJ}	0.004	120D–8

Comment #30 – cont.

- The equations originated from comment #25 against D2.0 which has very little explanation.
- I have not found any further analysis and suspect that the equations may be incorrect...
- Looking for alternative calculation