Calculating ES1 and ES2 using Least Squares Algorithm

Magesh Valliappan, IEEE 802.3bs 400Gb/s Task Force - Electrical Ad-hoc, Dec $21^{\text {st }} 2015$
Background: 802.3bs Draft 1.1 refers to "94.3.12.5.1 Transmitter linearity" to calculate the inner PAM4 levels of the transmitter using a DC pattern. This is a proposal to use PRBS13Q and least squares fitting instead.

The proposal borrows from the method to calculate SNDR in 94.3.12.5.2 Linear fit to the measured waveform except for this change "For aligned symbol values $x(n)$ use $-1,-1 / 3,+1 / 3$, and 1 to represent symbol values of $0,1,2$, and 3 ."

Compute the linear fit pulse response $p(k)$ from the captured waveform per 85.8.3.3.5 using $N_{p}=16$ and $D_{p}=2$. For aligned symbol values $\mathrm{x}(\mathrm{n})$ use $-1,-E S_{1}, E S_{2}$, and 1 to represent symbol values of $0,1,2$, and 3 , respectively, and where $E S_{1}$ and $E S_{2}$ are the effective symbol levels determined in 94.3.12.5.1.

Continue the calculations referenced to "85.8.3.3.5 Linear fit to the waveform measurement at TP2" until equation 85-7

85.8.3.3.5 Linear fit to the waveform measurement at TP2

Given the captured waveform $y(k)$ and corresponding aligned symbols $x(\mathrm{n})$ derived from the procedure defined in 85.8.3.3.4, define the M-by- N waveform matrix Y as shown in Equation (85-4).

$$
Y=\left[\begin{array}{cccc}
y(1) & y(M+1) & \ldots & y(M(N-1)+1) \tag{85-4}\\
y(2) & y(M+2) & \ldots & y(M(N-1)+2) \\
\ldots & \ldots & \ldots & \ldots \\
y(M) & y(2 M) & \ldots & y(M N)
\end{array}\right]
$$

Rotate the symbols vector x by the specified pulse delay D_{p} to yield x_{r} as shown in Equation (85-5).

$$
\begin{equation*}
x_{r}=\left[x\left(D_{p}+1\right) x\left(D_{p}+2\right) \ldots x(N) x(1) \ldots x\left(D_{p}\right)\right] \tag{85-5}
\end{equation*}
$$

Define the matrix X to be an N-by- N matrix derived from x_{r} as shown in Equation (85-6).

$$
X=\left[\begin{array}{cccc}
x_{r}(1) & x_{r}(2) & \ldots & x_{r}(N) \tag{85-6}\\
x_{r}(N) & x_{r}(1) & \ldots & x_{r}(N-1) \\
\ldots & \ldots & \ldots & \ldots \\
x_{r}(2) & x_{r}(3) & \ldots & x_{r}(1)
\end{array}\right]
$$

Define the matrix X_{1} to be the first N_{p} rows of X concatenated with a row vector of ones of length N. The M-by- $\left(N_{p}+1\right)$ coefficient matrix, P, corresponding to the linear fit is then defined by Equation (85-7). The superscript " T " denotes the matrix transpose operator.

$$
\begin{equation*}
P=Y X_{1}^{T}\left(X_{1} X_{1}^{T}\right)^{-1} \tag{85-7}
\end{equation*}
$$

The following section describes how to create a 4-by-MN matrix, W where each row contains the linear component contributed by each of the symbol values $[-1,-1 / 3,1 / 3,+1]$

Start with the symbol value, $S=-1$. Define the $N p-b y-N$ matrix X_{A} to be the result of an element wise comparison operator on the first Np rows of X against symbol value S. The comparison yields a value of 1 when the element matches the symbol value S and is 0 otherwise. Define the matrix $X_{A 1}$ to be X_{A} concatenated with a row of vector of ones of length N. Define the $M-b y-N$ matrix $W_{A}=P X_{A}$. Its elements are read out column wise to yield the row vector $w_{a}(k)$.

Repeat these steps for symbol values $S=-1 / 3,+1 / 3$ and +1 , to yield the row vectors $w_{b}(k), w_{c}(k)$ and $\mathrm{w}_{\mathrm{d}}(\mathrm{k})$ respectively.

Define the matrix W to be the concatenation of the the four row vectors $w_{a}(k), w_{b}(k), w_{c}(k), w_{d}(k)$
Define the row vector Y_{R} to be the elements of $y(k)$.

Define the 4-by-1 row vector L as
$L=Y_{R} W^{\top}\left(W W^{\top}\right)^{-1}$

The levels corresponding to the four symbol values are read row wise from L as shown
$L=\left[\begin{array}{lll}L_{A} & L_{B} & L_{C} \\ L_{D}\end{array}\right]$

Define $L_{\text {mid }}=\left(L_{D}+L_{A}\right) / 2$

Calculate ES1 $=\left(L_{B}-L_{\text {mid }}\right) /\left(L_{A}-L_{\text {mid }}\right)$

Calculate ES2 $=\left(L_{C}-L_{\text {mid }}\right) /\left(L_{D}-L_{\text {mid }}\right)$
$R_{L M}$ can now be defined as
$\mathrm{R}_{\mathrm{LM}}=$ Minimum(3*ES1, $\left.3 * E S 2,2-3^{* E S} 1,2-3 * E S 2\right)$

This equation captures the maximum deviation from ideal level of $1 / 3$, allowing $+/-5 \%$ error

