R_LM AND SNDR MEASUREMENT PROPOSAL

Raj Hegde \& Magesh Valliappan IEEE 802.3bs 400Gb/s Task Force Ad-hoc, Feb. 22 ${ }^{\text {st }}, 2016$

- Current R_{LM} specification is based on the minimum eye opening between the 4 PAM levels
- Current spec allows large deviations from ideal levels (up to 20% in asymmetric case)
- COM models the reduction in ideal eye opening implied by $R_{L M}$, but assumes perfect ISI cancellation by DFE
- It is not practical for a DFE to achieve this when TX levels are distorted
- Margin impact is proportional to the max. error on ES1 and ES2 and DFE tap weights
- Need to constrain the maximum error on ES1 and ES2 to avoid the worst case effect
- $\mathrm{R}_{\mathrm{LM}} \mathrm{spec}$ allows larger deviation (+10\%) on the positive side of ES1 and ES2
- In addition to DFE's imperfect ISI cancellation, this case is further aggravated by RX circuit compression
- Even with perfect linearity in the RX, PAM4 outer eyes are already more distorted.
- Assuming perfect data levels $(-1,-1 / 3,1 / 3,1)$, use the existing method to obtain the linear fit pulse $p(t)$
- With this $p(t)$, the input symbol matrix X, and the TX output Y, use least squares fit to obtain the 4 levels L_{A}, L_{B}, L_{C}, and L_{D} (details of the method described in valliappan 02122115 elect.pdf)
- Compute:
- $\mathrm{L}_{\text {mid }}=\left(\mathrm{L}_{\mathrm{D}}+\mathrm{L}_{\mathrm{A}}\right) / 2, E S 1=\left(\mathrm{L}_{\mathrm{B}}-\mathrm{L}_{\text {mid }}\right) /\left(\mathrm{L}_{A}-\mathrm{L}_{\text {mid }}\right)$, ES2 $=\left(\mathrm{L}_{\mathrm{c}}-\mathrm{L}_{\text {mid }}\right) /\left(\mathrm{L}_{\mathrm{D}}-\mathrm{L}_{\text {mid }}\right)$
- $R_{L M}$ defined to capture maximum deviation from ideal
- $R_{L M}=\operatorname{Min}\left(3^{*} E S 1,3^{*} E S 2,2-3^{*} E S 1,2-3^{*} E S 2\right)$ with limit of 0.95
- This will allow ES1 and ES2 to assume values of $+/-5 \%$ around ideal value of $1 / 3$
- Define ES = (ES1 + ES2)/2
- Re-compute $p(t)$ and SNDR using the source TX levels as [-1, -ES,+ES,+1]

UPDATED PROPOSAL

Replace the first 2 steps in the previous page with the direct measurement step proposed by A. Healey

- Measure the signal levels L_{A}, L_{B}, L_{C}, and L_{D} directly using PRBS13Q per Healey's comment
- Compute:
- $\mathrm{L}_{\text {mid }}=\left(\mathrm{L}_{\mathrm{D}}+\mathrm{L}_{A}\right) / 2$, ES1 $=\left(\mathrm{L}_{B}-\mathrm{L}_{\text {mid }}\right) /\left(\mathrm{L}_{A}-\mathrm{L}_{\text {mid }}\right)$, ES2 $=\left(\mathrm{L}_{\mathrm{c}}-\mathrm{L}_{\text {mid }}\right) /\left(\mathrm{L}_{D}-\mathrm{L}_{\text {mid }}\right)$
- $R_{L M}$ defined to capture maximum deviation from ideal
- $R_{L M}=\operatorname{Min}\left(3^{*} E S 1,3^{*} E S 2,2-3^{*} E S 1,2-3^{*} E S 2\right)$ with limit of 0.95
- This will allow ES1 and ES2 to assume values of $+/-5 \%$ around ideal value of $1 / 3$
- Define ES = (ES1 + ES2)/2
- Compute p(t) (linear fit) and SNDR using the source TX levels as [-1, $-E S,+E S,+1$]

