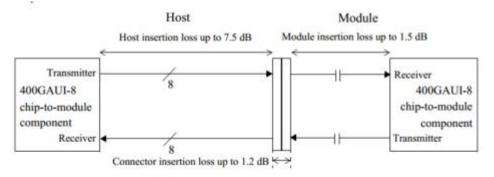


Chip To Module Twin Axial Cable Channels For 400 Gb/s: Re-examining the Insertion Loss Equation

Richard Mellitz, Samtec, April 24, 2017 Contributors: Scott McMorrow & Keith Guetig, Samtec

Supporters


- > Adee Ran Intel
- Howard Heck Intel
- Mike Dudek Cavium
- Piers Dawe Mellanox
- Rick Rabinovich- IXIA
- > Upen Reddy Kareti Cisco
- Yasuo Hidaka Fujitsu

Agenda

- Topology
- Simulation Results
- Issue
- Recommendation

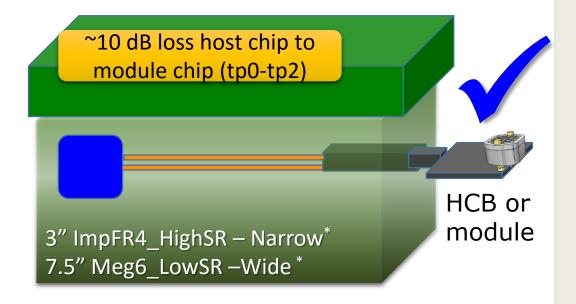
Board Layout for Chip to Module Designs are Challenging

- Routing density is one challenge for a high radix switch device or a large BGA device.
- The routing loss budget of 7.5 dB to the QSFP connector might require the best of the best PCB material or retimers
- There may be other ways to extend channel reach and work with the tight loss budget

The nominal signaling rate for each lane is 26.5625 GBd. The chip-to-module interface is defined using a specification and test methodology that is similar to that used for CEI-56G-VSR-PAM defined in OIF-CEI-04.x [B55a].

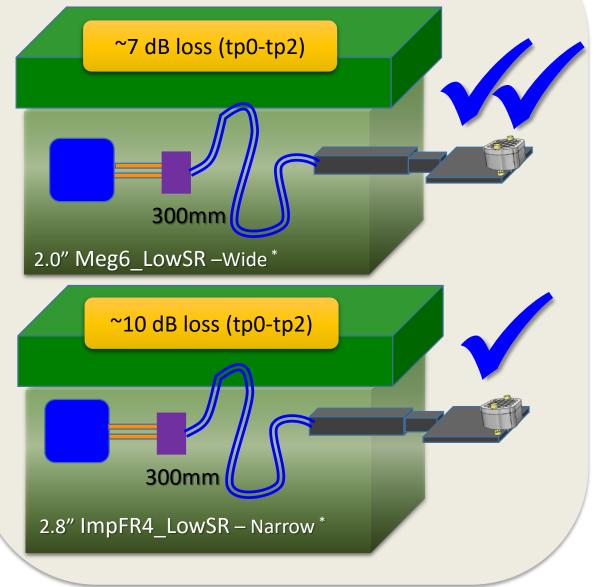
$$Insertion_loss(f) \le 0.0801 + 0.5736 \sqrt{f} + 0.6046f \quad (dB)$$

for 0.01 ≤ f ≤ 26.5625 (120E-1)

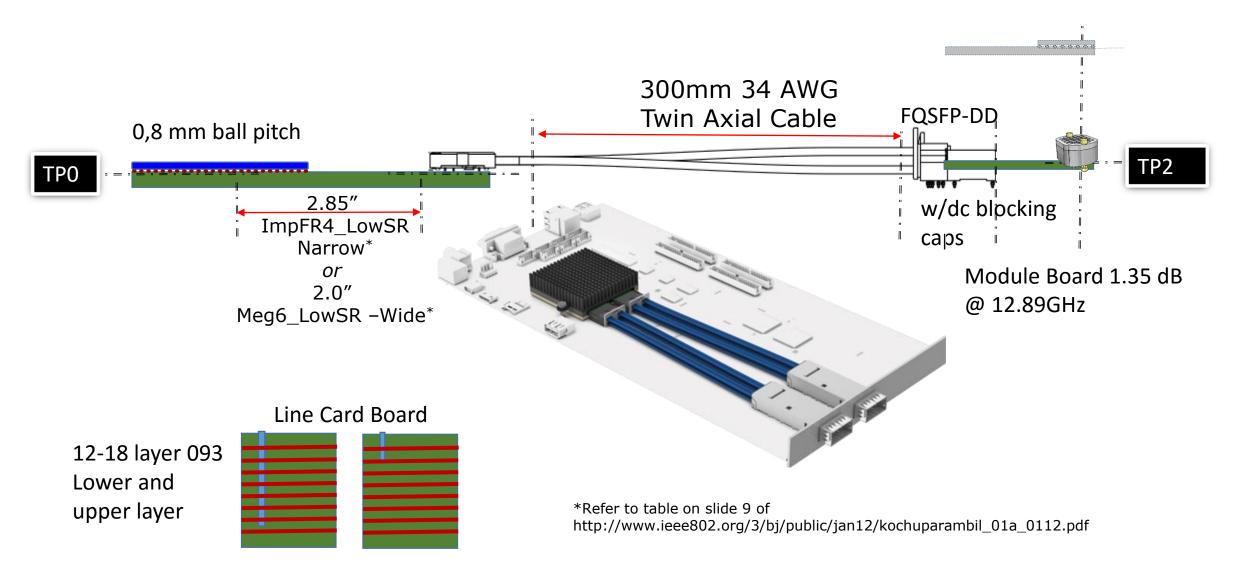

where

f is the frequency in GHz Insertion_loss(f) is the 200GAUI-4 or 400GAUI-8 chip-to-module insertion loss

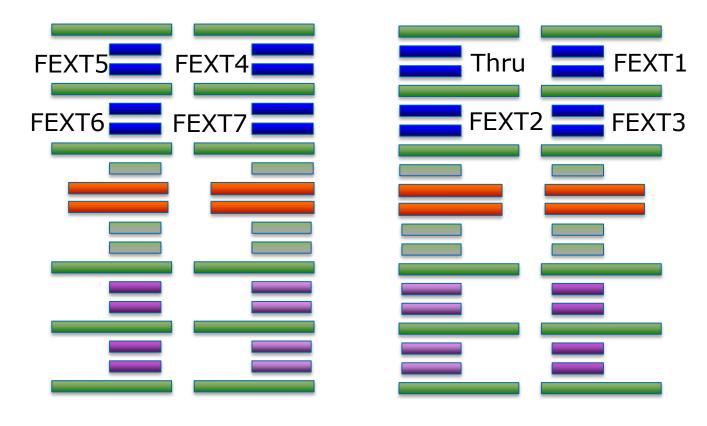
Flyover twin axial cable is another solution to alleviate density

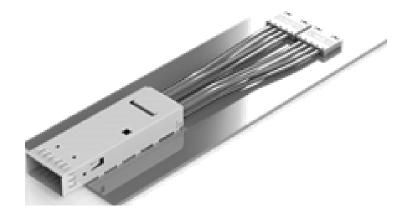


Flyover twin axial cables fit nicely in the line card "shoebox"

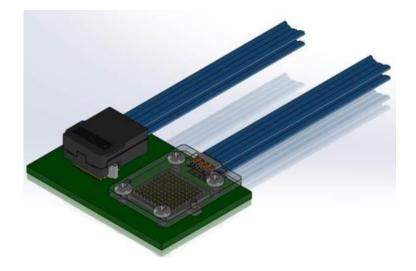


*Refer to table on slide 9 of http://www.ieee802.org/3/bj/public/jan12/kochuparambil_01a_0112.pdf


Two Channels Considered

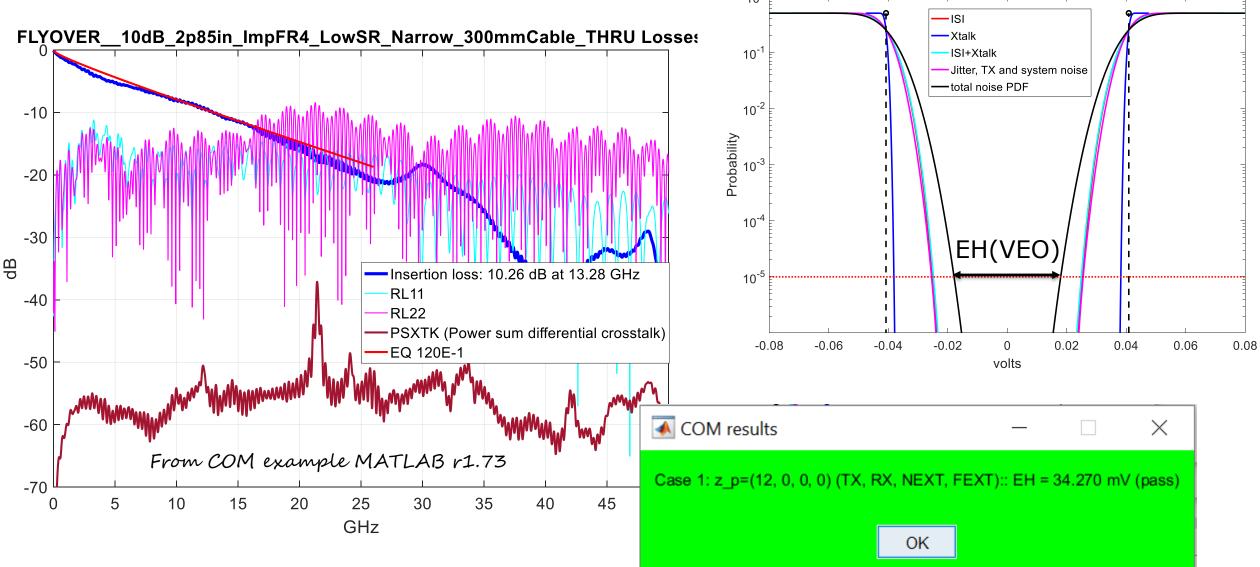


Topology – TP0 to TP2

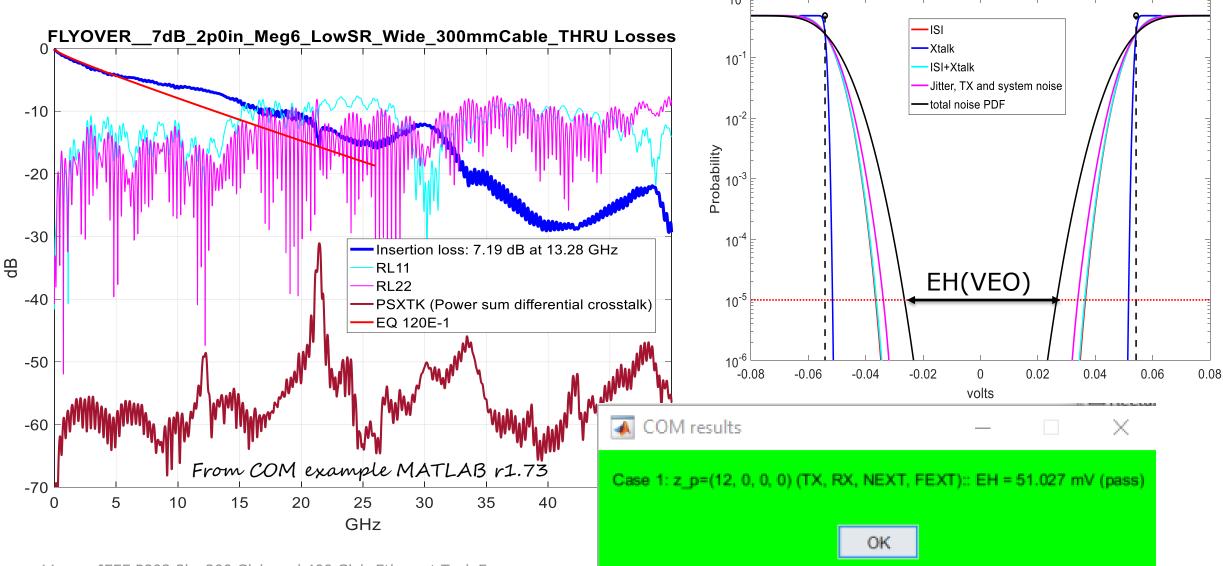


Channel Allocation Example

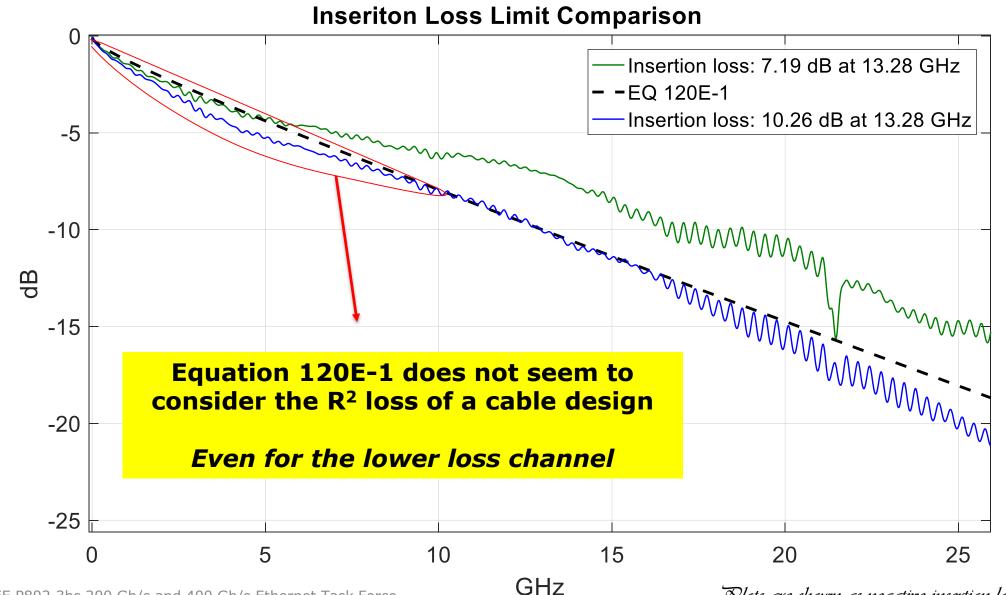
Tx and Rx on separate cable bundles makes for very low NEXT



COM Table


Motivated by <u>http://www.ieee802.org/3/bs/public/16_09/healey_3bs_01_0916.pdf</u>, <u>http://www.ieee802.org/3/bs/public/17_03/dudek_3bs_01_0317.pdf</u> and the D3.1 120d COM parameters

		/O control	1	Table 93A-1 parameters			
	logical	1	DIAGNOSTICS	Information	Units	Setting	Parameter
	logical	1	DISPLAY_WINDOW		GBd	26.5625	f_b
	logical	1	Display frequency domain		GHz	0.05	f_min
	logical	1	CSV_REPORT		GHz	0.01	Delta_f
		.\results\C2M_{date}\	RESULT_DIR	[TX RX]	nF	[1.8e-4 0]	C_d
	logical	0	SAVE_FIGURES	[test cases to run]		[1]	z_p select
		[1 3 2 4]	Port Order	[test cases]	mm	[12]	z_p (TX)
		C2M_	RUNTAG	[test cases]	mm	[0]	z_p (NEXT)
	Receiver testing			[test cases]	mm	[0]	z_p (FEXT)
	logical	0	RX_CALIBRATION	[test cases]	mm	[0]	z_p (RX)
	V	5.00E-03	Sigma BBN step	[TX RX]	nF	[0.9e-4 0]	C_p
	logical	0	IDEAL_TX_TERM		Ohm	50	R_0
	ns	1.30E-02	T_r	[TX RX]	Ohm	[55 50]	R_d
	logical	1	FORCE_TR		*fb	0.75	f_r
				min		0.6	c(0)
		lard control options	Non stand	[min:step:max]		[-0.15:0.05:0]	c(-1)
	logical	0	COM_CONTRIBUTION			[0:0.025:0.1]	c(-2)
	logical	0	TDR	[min:step:max]		[-0.25:0.05:0]	c(1)
				[min:step:max]	dB	5 3 3.5 4 4.5 5 5.5 6 6.5 7 7	g_DC
		Operational control			GHz	6.155 5.733 5.353 5.007 4.	f_z
	dB	5	COM Pass threshold		GHz	5 15.6 15.6 15.6 15.6 15.6 15.6 1	f_p1
0, 1	Value	0	Include PCB		GHz	1 14.1 14.1 14.1 14.1 14.1	f_p2
		C2M	PHY_type		V	0.45	A_v
EH limi	Value	32	EH_min		V	0.45	A_fe
EH lim	Value	1000	EH_max		V	0.63	A_ne
	GHz	2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	f_HP_P			4	L
	GHz	.1 1.075 1.05 1.025 1 1 1 1 1 1	f_HP_Z			32	M
					UI	0	N_b
	Table 93A—3 parameters					0.5	b_max(1)
	Units	Setting	Parameter			0.2	b_max(2N_b)
		[0 1.734e-3 1.455e-4]	package_tl_gamma0_a1_a2		UI	0.01	sigma_RJ
	ns/mm	6.141E-03	package_tl_tau		UI	0.02	A_DD
	Ohm	90	package_Z_c		V^2/GHz	0.00E+00	eta_0
					dB	32	SNR_TX
						0.95	R_LM
						1.00E-05	DER 0

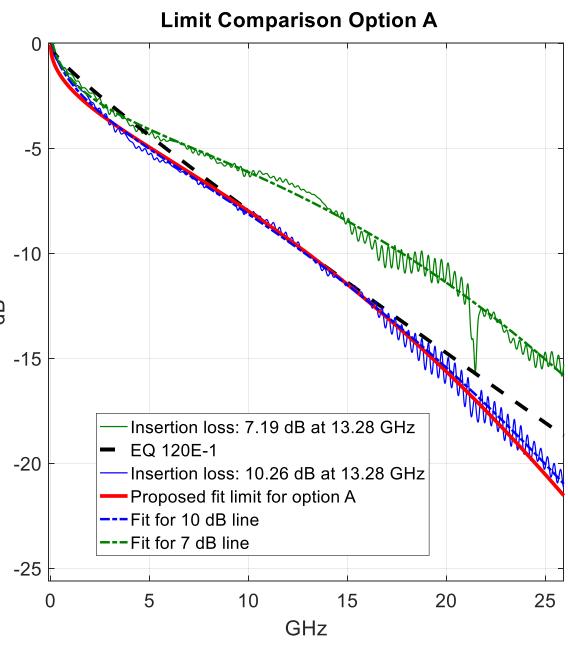

10 dB Loss Channel Seems to Have Acceptable Performance

7 dB Loss Channel Seems to Have Even Better Performance

The Issue: Cable R² Loss Not Considered

12 IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force

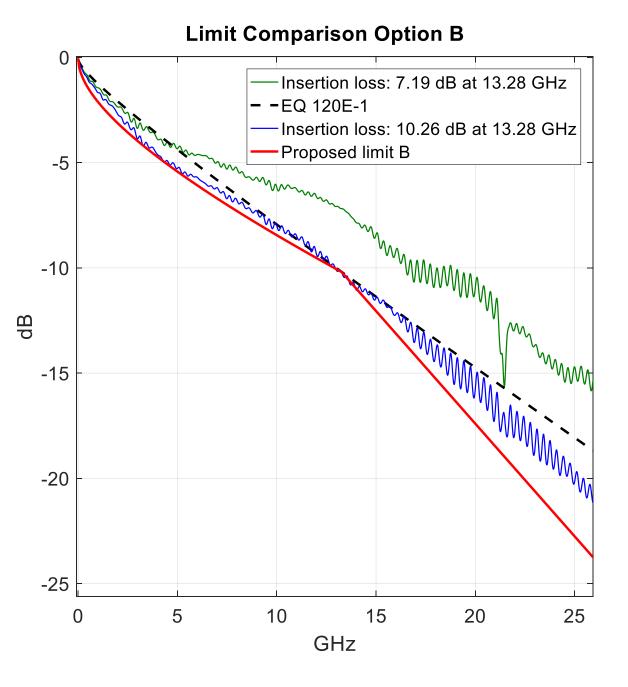
Elots are shown as negative insertion loss


Option A

 Change equation 120E-1 to form of 93A-51 and change text to

"The supported insertion loss fit budget is characterized by Equation (120E–1) and illustrated in Figure 120E–4. "The $\frac{9}{100}$ insertion loss fit is describe in 93A.3

$$IL_{fitted}(f) = a_0 + a_1\sqrt{f} + a_2f + a_4f^2 \qquad (93A-51)$$


> [a0 a1 a2 a4] =
 [0.05 1.65 0.155 0.0117]

Option B

 Use a limit line which encompasses r² cable loss.

 $Insertion_loss(f) = \frac{0.05 + 1.8\sqrt{f} + 0.2705f (dB)}{-4.0096 + 1.07f (dB)} \quad f \le 13.28$

- Add words to the effect that cable designs may not have to meet the low frequency masks
- Maybe something like:
 - -Change
 - The supported insertion loss budget is characterized by Equation (120E-1) and illustrated in Figure 120E-4.
 - $-\mathsf{To}$
 - "The supported insertion loss budget is characterized by Equation (120E-1) and illustrated in Figure 120E-4. However some designs using low loss material such as twin axial cable may dip below the line characterized by Equation 120E-1. Any design that meets the Transmitter and Receiver specifications given in sections 120E-2 to 120E-4 is acceptable."

- Flyover twin axial cable chip to module channel models provided for further analysis
- Broaden chip to module potential market applications to include twin axial cable
 - -Choose from Option A, B, or C
- Recommendation: Option B
 - Use a limit line which encompasses r² cable loss and a wider range of applications

Files and Naming

mellitz_3bs_01_041817.zip Tag name: 10 dB C2M Flyover tp0-tp2 channel
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_1.s4p
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_3.s4p
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_4.s4p
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_5.s4p
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_6.s4p
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_6.s4p
FLYOVER __7dB_2p0in_Meg6_LowSR_Wide_300mmCable_FEXT_6.s4p

mellitz_3bs_02_041817.zip Tag name: 7 dB C2M Flyover tp0-tp2 channel
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_1.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_3.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_4.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_5.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_6.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_6.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_7.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_7.s4p
FLYOVER__10dB_2p85in_ImpFR4_LowSR_Narrow_300mmCable_FEXT_7.s4p