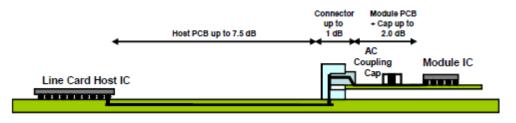
CDAUI-8 Chip-to-Module (C2M) System Analysis

Stephane Dallaire and Ben Smith, August 24th 2015

Introduction

- We investigate the merits of various reference receiver architectures for 26.5625GBaud PAM4 C2M
 - Relative merits are evaluated on the basis of Channel Operating Margin (COM) of the full C2M link (rather than TP1a, which doesn't account for RX package reflections)

We investigate the benefits of a 2-tap TXFIR

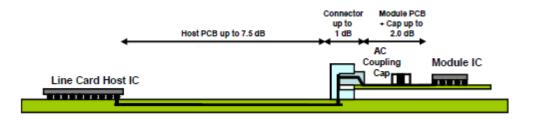

 To avoid auto-negotiation or other TXFIR optimization schemes, we show that a "coarse" 2-tap TXFIR (10%, 5%, or 0% pre) provides most of the benefit of pre-equalization

Similar to Hedge et al. (who focused on C2C channels):

- A low-frequency equalizer (LFEQ) is shown to be beneficial
- Reducing the target PAM4 symbol error rate is beneficial, and well-motivated due to non-bursty nature of error events

We discuss the choice of the target PAM4 symbol error rate for a CTLE-based RX

— We shouldn't be too pessimistic!



- TX and RX package models (.s4p file) each add ~1dB of IL @ 13.28125 GHz
- Die Termination with 120fF parasitic capacitance
- Module RX model:
 - (1z,1 p) low-frequency equalizer (zero & pole ~1GHz)
 - (1z, 2p) reference CTLE (from OIF-VSR-56G PAM-4 and CAUI-4 C2M):

Peaking (dB)	G	P1/2π (GHz)	P2/2π (GHz)	Z1/2π (GHz)
1	0.891	18.6	14.1	8.31
2	0.794	18.6	14.1	7.10
3	0.708	15.6	14.1	5.68
4	0.631	15.6	14.1	4.98
5	0.562	15.6	14.1	4.35
6	0.501	15.6	14.1	3.82
7	0.447	15.6	14.1	3.43
8	0.398	15.6	14.1	3.00
9	0.355	15.6	14.1	2.67

System Model

Host TX model:

- 750 mV differential peak-to-peak
- SNDR = 29 dB (peak-to-rms)
- RLM = 0.9
- RJ = 0.01 UIrms
- DJ = 0.05 UI peak-to-peak
- 2-tap TXFIR (i.e., pre+cursor)

CHANNEL	FEXT	NEXT	IL @ 13.28125 GHz (dB)	ILD (dBrms)
From IEEE 802.3bs shanbhag_3bs_14_0623:				
(1) Nelco 4000-13SI Host PCB + next gen 28Gb/s high density SMT IO	5	0	8.7	0.110
(2) EM-888 Host PCB + next gen 28Gb/s press-fit stacked IO	7	0	8.9	0.051
From IEEE 802.3bs shanbhag_3bs_01_1014:				
(3) 4in Megtron6 Host PCB + next gen 28Gb/s high density SMT IO	5	0	4.3	0.110
(4) 10in Megtron6 Host PCB + next gen 28Gb/s high density SMT IO	5	0	8.8	0.106
(5) 4in Megtron6 Host PCB + next gen 28Gb/s press-fit stacked IO	7	0	4.5	0.051
(6) 10in Megtron6 Host PCB + next gen 28Gb/s press-fit stacked IO	7	0	9.0	0.052
Cisco Channels:				
(7) Cisco 2in Stacked	0	0	8.5	0.237
(8) Cisco 5in Stacked	0	0	11.3	0.245

Link Margin Calculation

- The COM definition of margin is a quantification of the Vertical Eye Opening (VEO)
 - $\text{COM} \equiv \text{VEO} \triangleq 20 \log_{10} \left(\min \left\{ \frac{\text{Av}_{\text{upp}}}{\text{Av}_{\text{upp}} \text{v}_{\text{upp}}}, \frac{\text{Av}_{\text{mid}}}{\text{Av}_{\text{mid}} \text{v}_{\text{mid}}}, \frac{\text{Av}_{\text{low}}}{\text{Av}_{\text{low}} \text{v}_{\text{low}}} \right\} \right)$
 - Eye contours are measured for a target symbol error rate DER₀

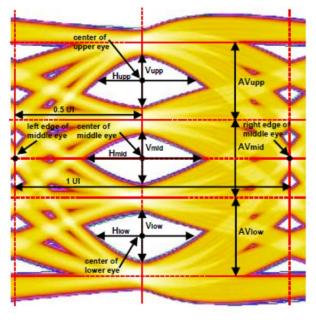


Figure 16-9. TP1a and TP4 jitter and Eye Height parameters

Baseline Results

Reference CTLE Receiver No TXFIR, No LFEQ, DER₀=1E-6

Channel	1	2	3	4	5	6	7	8
COM (dB)	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65

Only the ~4dB channels have positive margin

Improvements (1)

Reference CTLE + TXFIR

- COM program optimizes TXFIR: $|C_{-1}| \le 0.15$, $|C_{-1}| + |C_0| = 1$
- No LFEQ, $DER_0=1E-6$

Channel	1	2	3	4	5	6	7	8
CTLE	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65
CTLE + TXFIR	1.47	1.53	1.43	0.84	2.08	1.35	0.84	0.55

- A 2-tap TXFIR brings significant improvement on higher loss channels
 - Residual ISI cancellation is critical to PAM4

Improvements (2)

Reference CTLE + TXFIR + LFEQ

- COM program optimizes TXFIR and LFEQ : $0.5 \text{ GHz} \le z \le 2.5 \text{ GHz}, 0.5 \text{ GHz} \le p \le 2.5 \text{ GHz}$ - DER₀=1E-6

Channel	1	2	3	4	5	6	7	8
CTLE	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65
CTLE + TXFIR	1.47	1.53	1.43	0.84	2.08	1.35	0.84	0.55
CTLE + TXFIR + LFEQ	2.26	2.50	1.99	1.28	2.95	2.14	1.43	0.84

LFEQ approximately 0.5 dB to 1 dB of margin improvement in most cases

 LFEQ is useful to minimize residual ISI in the neighborhood of postcursors approximately 2 to 5 bauds the cursor

Improvements (3)

Reference CTLE + TXFIR + LFEQ + (DER₀ = 1E-5)

- $DER_0 = 1E-6$ is unnecessarily stringent
- Errors for proposed receiver are approximately independent identically distributed (or, at least, significantly less bursty than DFE-based RX).
- From anslow_3bs_03_0515 (slide 17), for electrical sub-links with random errors, **bit**-error-rate ~= 8.2E-4 **per** link, for a 0.1dB penalty in the optical link
 - $DER_0 = 1E-5$ corresponds to BER = 5E-6, so still a conservative target

Channel	1	2	3	4	5	6	7	8
CTLE	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65
CTLE + TXFIR	1.47	1.53	1.43	0.84	2.08	1.35	0.84	0.55
CTLE + TXFIR + LFEQ (1E-6)	2.26	2.50	1.99	1.28	2.95	2.14	1.43	0.84
CTLE + TXFIR + LFEQ (1E-5)	3.15	3.39	2.89	2.15	3.87	3.03	2.33	1.72

Practical Considerations

CTLE+TXFIR+LFEQ

- This implies a (potentially) complex optimization...
 - But most of the gain be obtained with fixed settings:
 - High Loss: TXFIR = [-0.1,0.9]; LFEQ: (z = 1 GHz, p = 1.2 GHz)
 - Medium Loss: TXFIR = [-0.05,0.95]; LFEQ: (z = 1 GHz, p = 1.2 GHz)

Channel	1	2	3	4	5	6	7	8
CTLE	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65
CTLE + TXFIR	1.47	1.53	1.43	0.84	2.08	1.35	0.84	0.55
CTLE + TXFIR + LFEQ (1E-6)	2.26	2.50	1.99	1.28	2.95	2.14	1.43	0.84
CTLE + TXFIR + LFEQ (1E-5)	3.15	3.39	2.89	2.15	3.87	3.03	2.33	1.72
CTLE + TXFIR [-0.1,0.9] + LFEQ(1G,1.2G) + (1E-5)	3.10	3.35	1.31	2.15	2.34	3.02	2.06	1.00
CTLE + TXFIR [-0.05,0.95] + LFEQ(1G,1.2G) + (1E-5)	2.22	2.51	3.03	1.42	3.87	2.15	0.85	-0.51

Conclusions

- A 2-tap TXFIR can be set coarsely, as a function of channel loss, with little loss in performance
 - High Loss (~10dB): [-0.1, 0.9]
 - Medium Loss (~5dB): [-0.05, 0.95]
 - Low Loss: [0,1]
- A reference receiver with an LFEQ provides additional ISI cancellation
- The target PAM4 symbol error strongly influences the system margin
 - Relative to a DFE-based system (e.g., C2C), the target should be decreased, due to absence of long bursts
- For channels with similar IL @ 13.28125 GHz, margin is influenced by ILD
 - Cisco channels have ILD (dBrms) approximately twice as large as the worst of the other six channels

Backup Slides

Improvements (4)

- Increasing the reference receiver bandwidth provides only a minor improvement in link margin, in a few cases
 - Reference CTLE poles and zero scaled by 10%
 - **Scaled** Reference CTLE + TXFIR + LFEQ, DER₀=1E-5

Channel	1	2	3	4	5	6	7	8
CTLE	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65
CTLE + TXFIR	1.47	1.53	1.43	0.84	2.08	1.35	0.84	0.55
CTLE + TXFIR + LFEQ (1E-6)	2.26	2.50	1.99	1.28	2.95	2.14	1.43	0.84
CTLE + TXFIR + LFEQ (1E-5)	3.15	3.39	2.89	2.15	3.87	3.03	2.33	1.72
Scaled CTLE + TXFIR + LFEQ (1E-5)	3.40	3.64	3.11	2.49	3.75	2.88	2.36	1.87

Comments on EV6 and EH6

In 802.3bj, a COM margin of 3 dB was considered sufficient for channel compliance

In current OIF draft, EH6 is set to 50mV

- This is quite stringent for high loss channels, corresponding to a COM larger than 3dB
 - Example 1:
 - TX Output: 750mV peak-to-peak; PAM levels: (+/-125 mV,+/-375 mV)
 - Equalization of 10dB channel loss (plus TX package losses) scales TX levels by factor of ~2.5
 - Received levels (with perfect TX linearity): (+/- 41.67, +/- 125)
 - A 50 mV eye opening corresponds to a COM of $20 \log_{10} \frac{41.67}{41.67-25} = 8 \text{ dB}$
 - Example 2 (Same Channel & EQ as Example 1):
 - TX Output: 1V peak-to-peak, R_{LM}=0.9; PAM levels: (+/-200 mV,+/-500 mV)
 - Received levels (with perfect TX linearity): (+/- 80, +/- 200)
 - A 50 mV eye opening corresponds to a COM of $20 \log_{10} \frac{60}{60-25} = 4.7 \text{ dB}$