

Updated 50G PAM4 C2M Simulations

Ali Ghiasi Ghiasi Quantum LLC

IEEE 802.3bs Electrical Adhoc Meeting

Jan 30th, 2017

Contributor/Supporter

- **Rich Mellitz Samtec**
- Yasuo Hidaka Fujitsu

Overview

□ The updated contribution adjust for effect of Sigma_x

- Updated result adjust for PAM4 Sigma_x =sqrt(5/9) to calibrate COM MDFEXT output with A_fe=3.09
- Updated results one set represent host to module and another set represent module to host
 - Host ASIC assumed package [6 30] mm
 - Module IC assumed packaged [6 12] mm
- Updated result with host IC with higher loss is almost a wash with module IC having lower loss but higher crosstalk
- **U** The base simulations have consisted of
 - 6 TE hypothetical channels with crosstalk ~1/6 of MDI definition of clause 92 and referenced by CL 120.E
 - 2 Cisco channels with no crosstalk
- History of comments on this issue
 - This issue was first raised with Comment 128 against P802.3bs draft 1.4 that mated board of CL92 crosstalk is
 excessive in support of 50G Cu cabling
 - Comments 83 and 86 are submitted against D2.0 related to excessive crosstalk not considered in the baseline C2M
 - Comments 135 against D2.1 related to excessive crosstalk not considered in the baseline C2M

Clause 92 MDI data without crosstalk show just about passes vertical eye opening

- There is very strong indication that clause 120.e fails badly far end eye opening
- Having MDI data which include crosstalk data will improve the simulation results and accuracy

Several times have requested representative clause 92 MDI data for more accurate simulation but no new data has yet been provided.

50G Mated Board References Legacy CL92 MCB/HCB Specifications

Currently CL 120E.4.1 MCB/HCB specifications references

- CL 92.11.1 for HCB specifications
- CL 92.11.2 for the MCB specifications
- CL 92.11.3.6 defines mated text fixture ICN
 - MDFEXT of 4.8 mV is excessive for 50G PAM4 link!

Table 92–13—Mated test fixtures integrated crosstalk noise

Parameter	100GBASE-CR4	Units		
MDNEXT integrated crosstalk noise voltage	Less than 1.8	mV		
MDFEXT integrated crosstalk noise voltage	Less than 4.8	mV		

Bases for the Mated MCB/HCB MDFEXT/MDNEXT in CL92

QSFP+ connector provided bases for the CL92 MDFEXT and MDNEXT

- QSFP28 does provide slight improvement but in 802.3cd decided to stay with these legacy limits
- <u>http://www.ieee802.org/3/bj/public/sep12/ghiasi_3bj_01a_0912.pdf</u>

MCB-HCB Crosstalk	10.3125 GBd ICN (mV)	25.78 GBd ICN (mV)	28.0 GBd ICN (mV)
Rise Time 20-80% (ps)	24.000	9.600	8.840
MDNEXT	0.323	1.390	1.612
MDFEXT	3.593	4.562	4.673
ICN	3.607	4.769	4.943

Hypothetical Channel Used for C2M Analysis Has Significantly Lower NEXT/FEXT

CDAUI-8/CCAUI-4 base channels

- http://www.ieee802.org/3/bs/public/adhoc/elect/24Aug_15/dallaire_01_082415_elect.pdf

CHANNEL	FEXT	NEXT	IL @ 13.28125 GHz (dB)	ILD (dBrms)
From IEEE 802.3bs shanbhag_3bs_14_0623:				
(1) Nelco 4000-13SI Host PCB + next gen 28Gb/s high density SMT IO	5	0	8.7	0.110
(2) EM-888 Host PCB + next gen 28Gb/s press-fit stacked IO	7	0	8.9	0.051
From IEEE 802.3bs shanbhag_3bs_01_1014:				
(3) 4in Megtron6 Host PCB + next gen 28Gb/s high density SMT IO	5	0	4.3	0.110
(4) 10in Megtron6 Host PCB + next gen 28Gb/s high density SMT IO	5	0	8.8	0.106
(5) 4in Megtron6 Host PCB + next gen 28Gb/s press-fit stacked IO	7	0	4.5	0.051
(6) 10in Megtron6 Host PCB + next gen 28Gb/s press-fit stacked IO	7	0	9.0	0.052
Cisco Channels:				
(7) Cisco 2in Stacked	0	0	8.5	0.237
(8) Cisco 5in Stacked	0	0	11.3	0.245

Test case 3 and 5 Having a loss similar to mated board are Used for Crosstalk Analysis

A. Ghiasi

IEEE 802.3bs Task Force

6

Crosstalk for C2M Test Case 3 and 5

Mated board had no NEXT and with excellent FEXT

- <u>http://www.ieee802.org/3/bs/public/channel/TEC/shanbhag_3bs_01_1014.pdf</u>
- C2M are based on channels with 5-7x lower crosstalk than mated board referenced currently!

A. Ghiasi

Baseline C2M Simulation Summary

- Baseline C2M simulation COM analysis for the hypothetical channels with 5-7x lower crosstalk doesn't even have margin even with CTLE+TXFIR+LFEQ at 1E-5 BER!
 - Increasing crosstalk by 5-7x on channels below with current link configuration and equalizer will be detrimental!
 - Summary results from

http://www.ieee802.org/3/bs/public/adhoc/elect/24Aug_15/dallaire_01_082415_elect.pdf

Channel	1	2	3	4	5	6	7	8
CTLE	-0.07	-0.04	1.01	-0.45	1.24	-0.13	-1.37	-2.65
CTLE + TXFIR	1.47	1.53	1.43	0.84	2.08	1.35	0.84	0.55
CTLE + TXFIR + LFEQ (1E-6)	2.26	2.50	1.99	1.28	2.95	2.14	1.43	0.84
CTLE + TXFIR + LFEQ (1E-5)	3.15	3.39	2.89	2.15	3.87	3.03	2.33	1.72

IEEE COM Rev 165 Parameters

Table 93A-1 parameters				I/O control				Table 93A–3 parameters				
	Parameter	Setting	Units	Information		DIAGNOSTICS	1	logical		Parameter	Setting	Units
	f_b	26.5625	GBd			DISPLAY_WINDOW	1	logical	pa	ckage_tl_gamma0_a1_a2	1.734e-3 1.455e-4]	
	f_min	0.05	GHz		Di	splay frequency domain	1	logical		package_tl_tau	6.141E-03	ns/mm
	Delta_f	0.01	GHz			CSV_REPORT	1	logical		package_Z_c	85	Ohm
	C_d	[1.8e-4 0]	nF	[TX RX]		RESULT_DIR	\results\C2C_{date}					
	z p select	[2]	1	test cases to run]		SAVE FIGURES	0	logical		Table 92-	-12 parameters	
	z_p (TX)	[6 30]	mm	[test cases]		Port Order	[2 4 1 3]			Parameter	Setting	
	z_p (NEXT)	[630]	mm	[test cases]		RUNTAG	c2m_MTF		b	oard_tl_gamma0_a1_a2	4.114e-4 2.547e-4]	
	z_p (FEXT)	[12 0]	mm	[test cases]		Rece	iver testing			board_tl_tau	6.191E-03	ns/mm
	z_p (RX)	[0 0]	mm	[test cases]		RX_CALIBRATION	0	logical		board_Z_c	109.8	Ohm
	C_p	[0.9e-4 0]	nF	[TX RX]		Sigma BBN step	5.00E-03	V		z_bp (TX)	150	mm
	R_0	50	Ohm			IDEAL_TX_TERM	0	logical		z_bp (NEXT)	150	mm
	R_d	[55 50]	Ohm	[TX RX]		T_r	1.30E-02	ns		z_bp (FEXT)	150	mm
	f_r	0.75	*fb			FORCE_TR	1	logical		z_bp (RX)	0	mm
	c(0)	0.6		min								
	c(-1)	[-0.15:0.05:0]		[min:step:max]		Non standard control options						
	c(-2)	[0:0.025:0.1]				INC_PACKAGE	1	logical				
	c(1)	[-0.25:0.05:0]		[min:step:max]		IDEAL_RX_TERM	0	logical				
	g_DC	.5 4 4.5 5 5.5 6 6.5 7	dB	[min:step:max]		INCLUDE_CTLE	1	logical				
	f_z	.733 5.353 5.007 4.6	GHz		II	NCLUDE_TX_RX_FILTER	1	logical				
	f_p1	15.6 15.6 15.6 15.6 1	GHz			COM_CONTRIBUTION	0	logical				
	f_p2	14.1 14.1 14.1 14.1 1	GHz					1				
	A_v	0.45	v									
	A_fe	3.09	V									
	A_ne	0.63	V									
	L	4										
	М	32										
	N_b	0	UI									
	b_max(1)	0.5										
	b_max(2N_b)	0.2										
	sigma_RJ	0.01	UI									
	A_DD	0.02	UI									
	eta_0	0.00E+00	/^2/GH	2								
	SNR_TX	31	dB									
	R_LM	0.95										
	DER_0	1.00E-05										
	Operational control		1									
	COM Pass threshold	3	dB				of DCD 0 -			D		
	Include PCB		Value	0, 1		Adds 120 ml	TI OT PCB, U N	o ext	ira PC	Б		
	PHY_type	C2M										
	EH_min	32	Value	EH limit								
	EH_max	1000	Value	EH limit								
	f_HP_P	<u>.2 1.2 1.2 1.2 1.2 1.2</u>	GHz									
f HP 7 5105102511111 GHz				1	1							

http://www.ieee802.org/3/cd/public/channel/mellitz_3cd_01_1116_COM.zip

A. Ghiasi

Results with MTF Test Board

TP1a response of the MTF test board + 150 mm (10.2 dB loss) has output VEO=28.7 mV without any crosstalk failing CL 120.E TP1a limit even without crosstalk!

- MTF board http://www.ieee802.org/3/bs/public/channel/mccom/diminico_3bs_01_0516.s4p

Using COM version 165 Results for MTF like channel with IL_fit=10.25 dB VEO=28.7 mV, ICN=0 mV, Peak ISI=9.31 mV, MDFEXT Peak=0 mV, ILD(FOM)=0.062, COM=5.34 dB

A. Ghiasi

IEEE 802.3 bs Task Force

C

-

000000

4" TE Stacked 50G Channel Meeting MTF (Host Output TP1a)

Based on TE hypothetical connector with IL_Fit of 4.3 dB but having MDFEXT p-p=2.37 mV (MDFEXT RMS for BER 1E-5=2.37/4.26=0.56 mV)

- To account for worst case MDFEXT=4.8 mV and MDNEXT=1.8 mV (PSXT=5.13 mV RMS) A_fe in in COM was adjusted from 0.45 to 3.09 in order to get MDFEXT p-p of 16.31 mV equivalent to PSXT of 5.13 mV RMS per table 92-13
- http://www.ieee802.org/3/bs/public/channel/TEC/shanbhag_3bs_01_1014.pdf

Results for A_fe=0.45: VEO=59.29 mV, ICN=1.237 mV, Peak ISI=12.38 mV, MDFEXT Peak=2.36 mV, ILD(FOM)=0.0675, COM=5.01 dB

Results with A_fe=3.09: VEO=48.17 mV, ICN=1.237 mV, Peak ISI=21.5 mV, MDFEXT Peak=16.24 mV, ILD(FOM)=0.0675 COM=4.69 dB

A. Ghiasi

IEEE 802.3 bs Task Force

000000

-^\/\-

10" TE Stacked 50G Channel (Host Output TP1a)

Based on TE hypothetical connector with IL_Fit of 8.8 dB shy of clause 120.E loss of 10.2 dB

- Since the 4" and 10" TE stack boards have similar construction with exception of one with longer trace, the calibrated A_fe crosstalk of the 4" board is used for the 10" board
- http://www.ieee802.org/3/bs/public/channel/TEC/shanbhag_3bs_01_1014.pdf

10" TE Stacked 50G Channel (Module Output TP5)

Based on TE hypothetical connector with IL_Fit of 8.8 dB shy of clause 120.E loss of 10.2 dB

- Since the 4" and 10" TE stack boards have similar construction with exception of one with longer trace, the calibrated A_fe crosstalk of the 4" board is used for the 10" board
- http://www.ieee802.org/3/bs/public/channel/TEC/shanbhag_3bs_01_1014.pdf

Using COM version 165 Results for A_Fe=0.45: VEO=32.27 mV, ICN=0.759 mV, Peak ISI=16.3 mV, MDFEXT Peak=1.40 mV , ILD(FOM)= 0.0572, COM=4.33 dB

Results with A_Fe=3.09 (updated): VEO=27.23 mV (failing), ICN=0.759 mV, Peak ISI=9.7 mV, MDFEXT Peak=16.3 mV, ILD(FOM)= 0.0572, COM=3.5 dB

10" TE Stacked 50G Channel (Host Output TP1a)

- Based on TE hypothetical connector with IL_Fit of 8.8 dB shy of clause 120.E loss of 10.2 dB, 31 mm of PCB trace added to increase the loss to 10.2 dB
 - Since the 4" and 10" board are similar with exception of the longer trace

Results with A_fe=3.0: VEO=23.89 mV (failing), ICN=0.663 mV, Peak ISI= 9.11 mV, MDFEXT Peak=8.19 mV, ILD(FOM)=0.0558, COM=4.2 dB

A. Ghiasi

10" TE Stacked 50G Channel (Module Output TP5)

- Based on TE hypothetical connector with IL_Fit of 8.8 dB shy of clause 120.E loss of 10.2 dB, 31 mm of PCB trace added to increase the loss to 10.2 dB
 - Since the 4" and 10" board are similar with exception of the longer trace

esults with A_fe=3.0: EO=23.15 mV (failing), ICN=0.663 mV, Peak ISI= 15.01 mV, MDFEXT eak=8.36 mV, ILD(FOM)=0.0558, COM=3.65 dB

A. Ghiasi

000000

QSFP MTF + Crosstalk from TE 4" Stacked (Host Output TP1a)

□ QSFP MTF (diminico_3bs_01_0516.s4p) does not have any crosstalk data

- TE 4" stacked with IL_Fit of \simeq 4.3 is used as the crosstalk source
- 150 mm of PCB trace is added per clause 92 to the MTF to increase channel loss to 10.2 dB
- 138 mm of PCB trace was added for FEXT aggressor as the TE 4" board has 0.5 dB higher loss than QSFP MTF.

Results with A_fe=3.09 : VEO=23.67 mV (failing), ICN=0.6634 mV, Peak ISI=9.31 mV, MDFEXT Peak=8.06 mV, ILD(FOM)=0.0621, COM=4.14 dB

A. Ghiasi

Summary

P802.3bs clause 120.E which reference CL92 has excessive amount of MDFEXT (4.8 mV) and MDNEXT (1.8 mV)

- Above crosstalk limits results in ~24 mV at TP1a instead of current limit of EH1E-5=32 32 mV
- Above crosstalk limits results in ~23 mV at TP5 instead of current limit of EH1E-5=32 32 mV
- 802.3bs C2M simulation in support of 50G/lane PAM4 were based on a TE hypothetical connector with ~6x lower FEXT and NEXT and does not provided technical feasibility with current MDI definition
- IEEE P802.3bs and cd need to collectively work together to resolve this issue sooner than later to minimize the impact
 - Having updated representative MDI data with crosstalk will be very helpful to improve the analysis and trade offs

D Potential area need to be considered in order to close the major hole in clause 120.E specification

- Clause 92 MDI crosstalk was based on the data I presented in 802.3bj over 5 years ago need to be tighten by ~3x for robust PAM4 operation
- TE hypothetical connector with superior crosstalk s proof that improved connector can be developed
- Current far end eye opening of EW1E-5=0.22 and EH1E-5=32 mV has very little room for further tightening
- Tighten transmitter parameters such as jitter and rise time can provided some relief but not enough to close the link budget
- Use COM as the tool to trade off loss, crosstalk, and ISI now that there are several MDI's each with somewhat different characteristics are targeted for 802.3bs/cd implementation
- Define a more powerful equalizer for the chip-to-module

The facts are clear 10.2 dB channel is only feasible with no crosstalk with CL120.e assumtions!

A. Ghiasi