# CHANNEL OPERATING MARGIN (COM) PROPOSAL FOR CDAUI-8 C2C



**Raj Hegde & Magesh Valliappan** IEEE 802.3bs 400Gb/s Task Force – Electrical Ad-hoc Nov. 30<sup>th</sup>, 2015





- Now that FEC & interleaving have been finalized, re-visit the BER target
- Re-visit TX and RX implementations budgets
  - SNR-TX
  - COM target

# **BER TARGET**



With symbol interleave from 2 FEC code words and bit-muxing in the PMA (Option 8 from anslow\_3bs\_03\_0915)

For multi-part link with 0.1dB optical penalty, to achieve FLR = 6.2e-11, total BER target for the electrical segments:
Case
DER0
BER

| Case   | DER0   | BER    |
|--------|--------|--------|
| Random | 1.6e-4 | 8.0e-5 |
| a=0.5  | 4.5e-5 | 4.5e-5 |

• With the same BER target, on an electrical only link, FLR < 6.2e-16 is achieved!

| Case   | DER0    | BER    |  |  |  |
|--------|---------|--------|--|--|--|
| FLR    | 6.2e-16 |        |  |  |  |
| Random | 3.0e-4  | 1.5e-4 |  |  |  |
| a=0.5  | 5.3e-5  | 5.3e-5 |  |  |  |

 With the assumption that at most 2 segments could be operating at the worst case, set the BER target per segment to 2e-5.



#### • SNR-TX:

- SNR-TX is derived from the TX SNDR specification.
- PAM4 transmitters have a richer variety of transitions and more mechanisms to generate distortion compared to NRZ
- Relaxed SNR-TX budget allows for ease of implementation leading to area and power savings.
- Investigate a relaxed SNR-TX assumption

#### Channel Operating Margin:

- The current reference receiver is simplified and ideal in some ways (quantization of detector levels, ideal DFE, no RX circuit noise & non-linearity)
- Consider a COM margin of 3dB.

## **COM MARGIN**



Baseline: Start with final settings on the Addendum slide in <u>healey\_3bs\_02\_1115.pdf</u>

| Test Case                                 | 1    | 2     | 3    | 4     | 5     | 6     | 7    | 8     |
|-------------------------------------------|------|-------|------|-------|-------|-------|------|-------|
| Insertion Loss (dB)                       | 19.2 | 14.34 | 7.22 | 18.93 | 17.24 | 11.14 | 9.24 | 18.75 |
| <u>healey_3bs_02_1115</u><br>(final pass) | 2.55 | 3.3   | 3.33 | 2.35  | 1.83  | 3.23  | 3.14 | 4.19  |
| This implementation (first pass)          | 2.09 | 3.21  | 3.3  | 2.24  | 1.61  | 3.06  | 3.0  | 4.33  |
| Rd = 55 Ohms                              | 1.85 | 2.92  | 2.73 | 2.0   | 1.35  | 2.73  | 2.57 | 3.97  |
| SNR-TX = 29dB                             | 1.17 | 2.1   | 1.94 | 1.32  | 0.73  | 1.93  | 1.8  | 2.96  |
| Set $DER_0 = 2E-5$                        | 2.38 | 3.37  | 3.2  | 2.57  | 1.93  | 3.18  | 3.05 | 4.25  |

### CONCLUSIONS



 The proposed modifications to the COM parameters provide better implementation targets with minimal compromise to end-to-end performance.