400GbE AMs revisited

Pete Anslow, Ciena
IEEE P802.3bs Task Force, Logic Ad Hoc, 28 April 2016

Introduction

The set of alignment markers for 400GbE in D1.3 was analysed in anslow 010216 logic and found to have adequate performance for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

The alignment marker structure as shown in Figure 119-4:

Bit Position: 0	23243132			5556636	48788959		
	$\left\{\mathrm{CM}_{0}, \mathrm{CM}_{1}, \mathrm{CM}_{2}\right\}$	Pad	$\left\{\mathrm{CM}_{3}, \mathrm{CM}_{4}, \mathrm{CM}_{5}\right\}$	Pad	$\left\{\mathrm{UM}_{0}, \mathrm{UM}_{1}, \mathrm{UM}_{2}\right\}$	Pad	$\left\{\mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}\right\}$

Figure 119-4-Alignment marker format
Where the Pad sections are PRBS9 makes the description and implementation of the AM blocks rather complex.

This contribution analyses the performance of this a revised format where the Pad sections shown in Figure 119-4 are replaced by extra UM bytes.

Baseline wander

Previous NRZ contributions have used a "baseline wander" parameter
This was defined as:
Baseline wander is the instantaneous offset (in \%) in the signal generated by AC coupling at the Baud rate / 10,000.

This analysis re-uses this definition unmodified, but it should be noted that for PAM4, the eye height is $1 / 3$ that of NRZ so the effects of a given amount of baseline wander will be greater.

Clock content

The "clock content" parameter is defined here as:
Create a function which is a 1 for a transition and a 0 for no transition and then filter the resulting sequence with a corner frequency of Baud/13281.

This analysis defines a transition as one of three possibilities (as per healey 3bs 01 1115):

- Symmetrical transitions through the signal average
- Transitions through the signal average
- All transitions

Filter with corner
frequency
Baud/13281

Clock content illustration

Symmetrical transitions through the signal average

All transitions

Revised alignment markers

This contribution proposes 120-bit alignment markers with a 48-bit common part of "0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9" (same as D1.3) and a 72-bit unique part:

Figure 119-4-Alignment marker format

Where UM_{5} to UM_{8} are the inverse of UM_{1} to UM_{4}.

The proposed markers are shown on the next page.

Revised alignment marker proposal

Table 119-1-400GBASE-R Alignment marker encodings

PCS lane number	$\left\{\mathrm{CM}_{0}, \mathrm{CM}_{1}, \mathrm{CM}_{2}, \mathrm{UM}_{0}, \mathrm{CM}_{3}, \mathrm{CM}_{4}, \mathrm{CM}_{5}, \mathrm{UM}_{1}, \mathrm{UM}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}, \mathrm{UM}_{6}, \mathrm{UM}_{7}, \mathrm{UM}_{8}\right\}$
0	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \times \mathrm{B} 6,0 \mathrm{x} 65,0 \times \mathrm{B} 5,0 \times \mathrm{D} 9,0 \mathrm{xD} 9,0 \mathrm{x} 01,0 \times 71,0 \times F 3,0 \times 26,0 \mathrm{xFE}, 0 \times 8 \mathrm{E}, 0 \mathrm{x} 0 \mathrm{C}$
1	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 04,0 \times 65,0 \times \mathrm{B} 5,0 \mathrm{xD} 9,0 \times 67,0 \times 5 \mathrm{~A}, 0 \times \mathrm{DE}, 0 \times 7 \mathrm{E}, 0 \times 98,0 \times \mathrm{A} 5,0 \times 21,0 \times 81$
2	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 46,0 \times 65,0 \times B 5,0 \times \mathrm{D} 9,0 \times \mathrm{FE}, 0 \times 3 \mathrm{E}, 0 \times \mathrm{F} 3,0 \times 56,0 \times 01,0 \times \mathrm{C} 1,0 \times 0 \mathrm{C}, 0 \times \mathrm{A} 9$
3	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \times 5 \mathrm{~A}, 0 \times 65,0 \times \mathrm{B} 5,0 \mathrm{xD} 9,0 \times 84,0 \times 86,0 \times 80,0 \mathrm{xD} 0,0 \mathrm{x} 7 \mathrm{~B}, 0 \mathrm{x} 79,0 \mathrm{x} 7 \mathrm{~F}, 0 \mathrm{x} 2 \mathrm{~F}$
4	
5	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \mathrm{xF} 2,0 \mathrm{x} 65,0 \mathrm{xB} 5,0 \mathrm{xD} 9,0 \mathrm{x} 4 \mathrm{E}, 0 \mathrm{x} 12,0 \mathrm{x} 4 \mathrm{~F}, 0 \mathrm{xD} 1,0 \mathrm{xB} 1,0 \mathrm{xED}, 0 \mathrm{xB} 0,0 \mathrm{x} 2 \mathrm{E}$
6	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 3 \mathrm{D}, 0 \mathrm{x} 65,0 \times \mathrm{B} 5,0 \mathrm{xD} 9,0 \mathrm{xEE}, 0 \times 42,0 \mathrm{x} 9 \mathrm{C}, 0 \mathrm{xA1}, 0 \mathrm{x} 11,0 \mathrm{xBD}, 0 \times 63,0 \times 5 \mathrm{E}$
7	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 22,0 \times 65,0 \times B 5,0 \times \mathrm{D} 9,0 \times 32,0 \times \mathrm{D} 6,0 \times 76,0 \times 5 \mathrm{~B}, 0 \times \mathrm{CD}, 0 \times 29,0 \times 89,0 \times \mathrm{A} 4$
8	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \times 60,0 \mathrm{x} 65,0 \mathrm{BB} 5,0 \mathrm{xD} 9,0 \mathrm{x} 9 \mathrm{~F}, 0 \mathrm{xE} 1,0 \times 73,0 \times 75,0 \times 60,0 \mathrm{x} 1 \mathrm{E}, 0 \mathrm{x} 8 \mathrm{C}, 0 \times 8 \mathrm{~A}$
9	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \mathrm{x} 6 \mathrm{~B}, 0 \mathrm{x} 65,0 \mathrm{xB} 5,0 \mathrm{xD} 9,0 \mathrm{xA} 2,0 \mathrm{x} 71,0 \mathrm{xC} 4,0 \times 3 \mathrm{C}, 0 \mathrm{x} 5 \mathrm{D}, 0 \mathrm{x} 8 \mathrm{E}, 0 \mathrm{x} 3 \mathrm{~B}, 0 \mathrm{xC} 3$
10	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times F A, 0 \times 65,0 \times B 5,0 \times \mathrm{D} 9,0 \mathrm{x} 04,0 \times 95,0 \mathrm{xEB}, 0 \times \mathrm{D} 8,0 \times \mathrm{FB}, 0 \mathrm{x} 6 \mathrm{~A}, 0 \times 14,0 \times 27$
11	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 6 \mathrm{C}, 0 \mathrm{x} 65,0 \times \mathrm{B} 5,0 \times \mathrm{D} 9,0 \times 71,0 \mathrm{x} 22,0 \mathrm{x} 66,0 \times 38,0 \mathrm{x} 8 \mathrm{E}, 0 \mathrm{xDD}, 0 \mathrm{x} 99,0 \mathrm{xC7}$
12	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 18,0 \mathrm{x} 65,0 \mathrm{xB} 5,0 \mathrm{xD} 9,0 \mathrm{x} 5 \mathrm{~B}, 0 \times \mathrm{A} 2,0 \times \mathrm{F} 6,0 \mathrm{x} 95,0 \times \mathrm{A} 4,0 \mathrm{x} 5 \mathrm{D}, 0 \mathrm{x} 09,0 \times 6 \mathrm{~A}$
13	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times 14,0 \times 65,0 \times B 5,0 \times D 9,0 \times C C, 0 \times 31,0 \times 97,0 \times C 3,0 \times 33,0 \times C E, 0 \times 68,0 \times 3 \mathrm{C}$
14	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \mathrm{xD} 0,0 \mathrm{x} 65,0 \mathrm{xB5}, 0 \mathrm{xD} 9,0 \mathrm{xB1}, 0 \mathrm{xCA}, 0 \mathrm{xFB}, 0 \mathrm{xA6}, 0 \mathrm{x} 4 \mathrm{E}, 0 \mathrm{x} 35,0 \times 04,0 \mathrm{x} 59$
15	$0 \mathrm{x} 9 \mathrm{~A}, 0 \mathrm{x} 4 \mathrm{~A}, 0 \times 26,0 \times B 4,0 \mathrm{x} 65,0 \times \mathrm{B} 5,0 \times \mathrm{D} 9,0 \mathrm{x} 56,0 \mathrm{xA6}, 0 \times \mathrm{BA}, 0 \mathrm{x} 79,0 \mathrm{xA} 9,0 \times 59,0 \times 45,0 \times 86$

${ }^{\text {a }}$ Each octet is transmitted LSB to MSB.

Simulations

Using these alignment codes, all possible combinations of PCS lanes for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes were then analysed to find the worst cases for Baseline Wander (BW) and Clock Content (CC) after Gray coding to PAM4 symbols. These searches included lane delays of -20 to +20 as per the previous analysis for the 4:1 case.

The worst case PCS lane combinations and delays were then used to generate the worst case PDFs for 400 GbE scrambled idle $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

Scrambled idle construction

The scrambled idle symbol streams generated for this analysis were:

- Idle control characters
- 256B/257B transcoded
- Scrambled
- Distributed 10 bits at a time to two FEC codewords which start with alignment markers followed by 136 bits of PRBS9 one in every 8192 code words
- 300 bits of $\operatorname{RS}(544,514)$ FEC parity added
- Interleaved 10 bits at a time to form PCS lanes (option 8a)
- Bit interleaved with worst case PCS lane combinations and delays

The results for baseline wander and clock content are in the following slides.

Baseline wander, 100G lanes, D1.3 markers

Baseline wander, 100G lanes, new markers

Clock, sym trans through ave, 100G lanes, D1.3

Clock, sym trans through ave, 100G lanes, new

Clock, trans through ave, 100G lanes, D1.3

Clock, trans through ave, 100G lanes, new

Clock, all transitions, 100G lanes, D1.3

Clock, all transitions, 100G lanes, new

Conclusion

The baseline wander and clock content for the revised alignment marker proposal show a slightly worse "shoulder" on some clock content plots as expected, but they remain within the baseline wander and clock content for the PRBS31Q test pattern.

It is therefore proposed to use this revised alignment marker scheme for $400 \mathrm{~Gb} / \mathrm{s}$ Ethernet.

Backup

Worst case lane combinations revised proposal

4:1 bit interleaving for 100 Gb/s lanes

	First lane	Second lane	Third lane	Fourth lane	First lane delay	Second lane delay	Third lane delay	Fourth lane delay
wander_max	8	0	3	10	0	0	20	20
wander_min	2	3	14	11	0	1	-15	17
clock25_max	2	5	11	10	0	0	1	0
clock25_min	9	8	10	3	0	0	-5	-5
clock50_max	6	0	9	1	0	11	-2	-4
clock50_min	5	0	10	1	0	2	0	2
clock75_max	2	9	5	6	0	-2	-2	-1
clock75_min	5	11	13	9	0	0	-1	-1

Thanks!

