400GbE AMs and PAM4 test pattern characteristics

Pete Anslow, Ciena

IEEE P802.3bs Task Force, Logic Ad Hoc, 11 December 2015

Introduction

A PRBS13Q short test pattern was added to P802.3bs D1.1 and there has been a proposal to use PRBS31Q as a long test pattern. This contribution analyses the performance of these test patterns.

The alignment markers for 400 GbE are TBD. This contribution also proposes some marker values and analyses the performance of them.

Baseline wander

Previous NRZ contributions have used a "baseline wander" parameter
This was defined as:
Baseline wander is the instantaneous offset (in \%) in the signal generated by AC coupling at the Baud rate / 10,000.

This analysis re-uses this definition unmodified, but it should be noted that for PAM4, the eye height is $1 / 3$ that of NRZ so the effects of a given amount of baseline wander will be greater.

For NRZ contributions see:
P802.3ba anslow 010108
P802.3ba anslow 061108
P802.3bj anslow 01a 0112

Clock content

Previous NRZ contributions have also used a "clock content" parameter defined as:

Create a function which is a 1 for a transition and a 0 for no transition and then filter the resulting sequence with a corner frequency of Baud/1667.

This analysis re-uses this definition unmodified but defines a transition as one of three possibilities (as per healey 3bs 01 1115):

- Symmetrical transitions through the signal average
- Transitions through the signal average
- All transitions

Clock content illustration

Symmetrical transitions through the signal average

Transitions through the signal average

All transitions

PRBS13Q and PRBS31Q

The following slides contain the baseline wander and three clock content probability density plots for:

- Random data (solid green)
- Fit to random data (dotted green)
- PRBS13Q (blue)
- PRBS31Q (red)

Where the PRBS31Q pattern was formed as per PRBS13Q but with a PRBS31 NRZ starting pattern in place of the PRBS13 pattern.

Baseline wander

Clock, symmetric transitions through ave.

Clock, transitions through ave.

Clock, all transitions

Alignment markers

In D1.1, Table 119-1 defines 120-bit alignment markers with a 64-bit common part of "0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B" followed by a 56-bit unique part.

The alignment markers for 40 and 100 GbE were defined in anslow 061108 and anslow 01 0108, respectively. The codes used were generated using a section of the $1+x^{39}+x^{58}$ scrambler output with all zeros input.

This contribution proposes a set of 56-bit unique part alignment markers for 400 GbE based on a section of the $1+x^{39}+x^{58}$ scrambler output with all zeros input. The markers were chosen so that each byte of the unique part ($\mathrm{M}_{8}, \mathrm{M}_{9}$, etc.) is unique for each marker including the 20 x $100 \mathrm{GbE}, 4 \times 40 \mathrm{GbE}$, and markers used by OIF for MLG.

Bytes 12, 13, and 14 of the marker were formed from the inverse of bytes 8,9 , and 10 to minimise the baseline wander caused by the markers.

The proposed markers are shown on the next page.

Alignment marker proposal

Table 119-1-400GBASE-R Alignment marker encodings

PCS lane number	
0	0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, 0x9E, 0xEB, 0x27, 0xB4, 0x61, 0x14, 0xD8
1	$0 \mathrm{xC1}, 0 \mathrm{x} 68,0 \mathrm{x} 21,0 \mathrm{xF} 4,0 \mathrm{x} 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{DDE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \mathrm{x} 50,0 \mathrm{x} 74,0 \mathrm{x} 88,0 \mathrm{x} 5 \mathrm{~A}, 0 \mathrm{xAF}, 0 \mathrm{x} 8 \mathrm{~B}, 0 \mathrm{x} 77$
2	$0 \times \mathrm{Cl} 1,0 \times 68,0 \times 21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \times 97,0 \times \mathrm{DE}, 0 \times 0 \mathrm{~B}, 0 \times \mathrm{BB} 4,0 \times \mathrm{B} 7,0 \times \mathrm{CA}, 0 \times \mathrm{B} 4,0 \times 4 \mathrm{~B}, 0 \times 48,0 \times 15$
3	$0 \times \mathrm{Cl} 1,0 \times 68,0 \times 21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \times 97,0 \times \mathrm{DE}, 0 \times 0 \mathrm{~B}, 0 \times \mathrm{EE} 4,0 \times \mathrm{FB}, 0 \times \mathrm{FF} 1,0 \times \mathrm{B} 4,0 \times 1 \mathrm{~B}, 0 \times 44,0 \times 0 \mathrm{E}$
4	$0 \mathrm{xC1} 1,0 \mathrm{x} 68,0 \times 21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{xDE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \mathrm{xDC}, 0 \times 58,0 \mathrm{xEE}, 0 \times 78,0 \times 23,0 \times \mathrm{A} 7,0 \times 11$
5	0xC1, 0x68, 0x $21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \times 97,0 \times D E, 0 \times 0 \mathrm{~B}, 0 \times \mathrm{BD}, 0 \times \mathrm{A} 9,0 \times \mathrm{BF}, 0 \times \mathrm{A} 5,0 \times 42,0 \times 56,0 \times 40$
6	0xC1, 0x68, 0x $21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{xDE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \times 97,0 \times 67,0 \times 77,0 \times 78,0 \times 68,0 \times 98,0 \times 88$
7	0xC1, 0x68, 0x $21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \times 97,0 \times D E, 0 \times 0 \mathrm{~B}, 0 \times 24,0 \times 35,0 \times 45,0 \times 87,0 \times D B, 0 \times C A, 0 \times 5 \mathrm{~A}$
8	
9	$0 \mathrm{xC1}, 0 \mathrm{x} 68,0 \mathrm{x} 21,0 \mathrm{xF} 4,0 \mathrm{x} 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{xDE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \mathrm{x} 28,0 \mathrm{xF} 9,0 \mathrm{x} 3 \mathrm{E}, 0 \mathrm{xB} 4,0 \mathrm{xD} 7,0 \mathrm{x} 06,0 \mathrm{xCl}$
10	$0 \mathrm{xC1} 1,0 \mathrm{x} 68,0 \times 21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{xDE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \times \mathrm{CB}, 0 \mathrm{xD} 1,0 \mathrm{xAD}, 0 \times 2 \mathrm{D}, 0 \times 34,0 \times 2 \mathrm{E}, 0 \times 52$
11	$0 \times \mathrm{Cl} 1,0 \times 68,0 \times 21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \times 97,0 \times \mathrm{DE}, 0 \times 0 \mathrm{~B}, 0 \times 5 \mathrm{E}, 0 \times 1 \mathrm{E}, 0 \times 38,0 \times 4 \mathrm{~B}, 0 \times \mathrm{A} 1,0 \times \mathrm{LE} 1,0 \times \mathrm{C} 7$
12	0xC1, 0x68, 0x21, 0xF4, 0x3E, 0x97, 0xDE, 0x0B, 0x19, 0x98, 0xF9, 0x96, 0xE6, 0x67, 0x06
13	$0 \mathrm{xCl} 1,0 \times 68,0 \mathrm{x} 21,0 \times \mathrm{FF} 4,0 \mathrm{x} 3 \mathrm{E}, 0 \mathrm{x} 97,0 \times \mathrm{DE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \times 84,0 \mathrm{xEC}, 0 \times 20,0 \mathrm{x} 4 \mathrm{~B}, 0 \mathrm{x} 7 \mathrm{~B}, 0 \mathrm{x} 13,0 \times \mathrm{DF}$
14	0xC1, 0x68, 0x $21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \times 97,0 \times D E, 0 \times 0 \mathrm{~B}, 0 \times 13,0 \times 44,0 \times \mathrm{ED}, 0 \mathrm{CC} 3,0 \mathrm{xEC}, 0 \times 5 \mathrm{~B}, 0 \times 12$
15	0xC1, 0x68, 0x $21,0 \times F 4,0 \times 3 \mathrm{E}, 0 \mathrm{x} 97,0 \mathrm{xDE}, 0 \mathrm{x} 0 \mathrm{~B}, 0 \times 3 \mathrm{~F}, 0 \mathrm{x} 8 \mathrm{~A}, 0 \times \mathrm{BE}, 0 \mathrm{x} 5 \mathrm{~A}, 0 \times \mathrm{C} 0,0 \times 75,0 \times 41$

${ }^{\text {a }}$ Each octet is transmitted LSB to MSB.

Simulations

Using these new alignment codes, all possible combinations of PCS lanes for 2:1 bit interleaving for $50 \mathrm{~Gb} / \mathrm{s}$ lanes and $4: 1$ bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes were then analysed to find the worst cases for Baseline Wander (BW) and Clock Content (CC) after Gray coding to PAM4 symbols. These searches included lane delays of -40 to +40 bits for each PCS lane for the 2:1 case and -20 to +20 for the 4:1 case.

The worst case PCS lane combinations and delays were then used to generate the worst case PDFs for 400 GbE scrambled idle $50 \mathrm{~Gb} / \mathrm{s}$ lanes and $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

Scrambled idle construction

The scrambled idle symbol streams generated for this analysis were:

- Idle control characters
- 256B/257B transcoded
- Scrambled
- Distributed 10 bits at a time to two FEC codewords which start with alignment markers and 136 bits of PRBS9 one in every 8192 code words
- 300 bits of $\operatorname{RS}(544,514)$ FEC parity added
- Interleaved 10 bits at a time to form PCS lanes (option 8a)
- Bit interleaved with worst case PCS lane combinations and delays

The results for baseline wander and clock content are in slides 15 to 18 for $50 \mathrm{~Gb} / \mathrm{s}$ lanes and slides 19 to 22 for $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

Baseline wander, 50G lanes

Clock, symmetric trans. through ave., 50G lanes

Clock, transitions through ave., 50G lanes

Clock, all transitions, 50G lanes

Baseline wander, 100G lanes

Clock, symmetric trans through ave., 100G lanes

Clock, transitions through ave., 100G lanes

Clock, all transitions, 100G lanes

Effect of common part of lane marker, 2:1

Worst case clock content for all transitions, 50G lanes. Common part of alignment marker gives 64 symbols as below for zero skew:

Effect of common part of lane marker, 4:1

Worst case clock content for all transitions, 100G lanes. Common part of alignment marker gives 128 symbols as below for zero skew:

Conclusions

The baseline wander and clock content for 10,000 years of random data should be equalled or exceeded by test patterns used for BER testing.

PRBS31Q does this for all but the clock for symmetric transitions through the signal average, so it looks like a reasonable choice for a stressful test pattern.

PRBS13Q is much less stressful than either random data or scrambled idle, so is ok as a replacement for PRBS9, but is not suitable for BER related tests.

The common part of the 120-bit alignment markers causes a significant "shoulder" on the clock density plots for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

Backup

Worst case lane combinations

2:1 bit interleaving for 50 Gb/s lanes

	First lane	Second lane	First lane delay	Second lane delay
wander_max	0	6	0	0
wander_min	3	7	0	32
clock25_max	8	11	0	-8
clock25_min	6	8	0	0
clock50_max	0	1	0	14
clock50_min	0	1	0	1
clock75_max	0	1	0	-24
clock75_min	0	11	0	0

4:1 bit interleaving for 100 Gb/s lanes

	First lane	Second lane	Third lane	Fourth lane	First lane delay	Second lane delay	Third lane delay	Fourth lane delay
wander_max	2	3	0	6	0	0	20	20
wander_min	6	14	3	7	0	11	-14	18
clock25_max	1	2	9	3	0	0	-12	-1
clock25_min	9	1	13	5	0	0	0	0
clock50_max	0	1	2	3	0	14	-12	17
clock50_min	1	0	9	2	0	1	0	1
clock75_max	3	13	9	0	0	-13	11	18
clock75_min	4	14	11	12	0	0	0	0

Thanks!

