Alignment Marker Lock/Unlock Schemes for 400GE

IEEE P802.3bs, Logic Ad Hoc Dec. 2015

Zhongfeng Wang, Broadcom Phil Sun, Credo Mark Gustlin, Xilinx

Current Proposal for AM Patterns

Proposed 400Gb/s AMs

- Re-use 100G AM0 from 802.3ba to allow common block lock between lanes of 100G and 400G, the rest is unique to 400GbE
- Have a 56b 400G unique AM per lane also
 - 56+64 = 120b, putting 120b on each FEC lane after RS symbol distribution requires 8x257b AM blocks
 - Content of 400G AMx is TBD

FEC Lane	Reed-Solomon symbol index (10 bit symbols			
a contract	0 1 2 3 4 5	3 7 8 9 1 1	1.2	
0	o AMO os	4003 AMQ		
1	AM0	400G AM1		
2	AM0	400G AM2		
3	AM0	400G AM3		
4	AM0	400G AM4		
15	AM0	400G AM5		
6	AM0	400G AM8		
7	AM0	400G AM7		
8	AM0	400G AM8		
9	AM0	400G AM9		
10	AM0	400G AM10		
11	AM0	400G AM11		
12	AM0	400G AM12		
13	AM0	400G AM15		
14	AM0	400G AM14		
15	AM0	400G AM15		

AM Lock Scheme in 100G-KR4

- Input BER: 2.3e-5
- Assume error propagation: 0.42
- If no more than 3 nibbles errors happen in 48-b segment, we claim a "block match".
- If two heading AM blocks in 2 consecutive AM groups are matched by definition, we will enter the "Lock" state.
- Mean time of lock: Tm=1.5 + 4e-7 (unit: AM group elapse time)
- False alignment probability:
 P(false align) ~1.0e-17 → mean time of 1.7e5 yrs.
- Worst case lock time: P(not lock in 6 group delays) < 1.0e-21 → mean time > 1.7e9 years The worst scenario: ---v---x---v----x

Locking Analyses in 400GE

- Assume input BER: ~1e-6
- Assume error propagation probability (EPP): 0.75
- There're 16 nibbles in a 64-b data segment. Excluding the fields that were BIP fields in 802.3bj, we will only match 12 nibbles to keep the lock circuitry consistent between 100G and 400G".
- Block match:: there are no more than 2 nibble errors per 64-b block.
- Lock definition:: 2 consecutive block matches
- Mean time of lock:
 - Tm=1.5 + 7e-3 (unit: AM group elapse time)
- •False alignment probability: P(false align) ~= 3.6e-21
 - \rightarrow mean time ~6e7 years.

Note: when BER=2e-4, EPP=0.65, we get similar results

Use FEC Status for Unlock Detection

- Assume all 16 (or 8) lanes are correctly aligned. But FEC decoding status may provide misleading information.
 - Consider FLER=6e-11. Thus it is practically impossible to have 3 consecutive un-decodable FEC blocks when correctly aligned.
 - Therefore, it is reasonable to claim "unlock" when detecting 3 undecodable FEC blocks.

Use FEC Status for Unlock Detection (II)

If there's any false alignment, .e.g., offset by 1 bit or 1 symbol for one lane, it will lead to 100+ symbol errors with high probability. In this case, a false decoding may happen. But the probability of false decoding will be much less than 1e-13. A worst case (p < 1e-26) is given as follows: ---Ud----Ud----Ud----Ud----Ud----Ud----Ud----Ud, where "Fd" denotes "false decoding of a FEC block", "Ud" stands for a undecodable FEC block.

 In the above case, we take 9 FEC blocks of transmission time to enter "unlock" state when false aligned. This is many orders of magnitudes shorter than using normal AM blocks.

 Note: if setting 2-pair of undecodable FEC blocks as condition, we will have same best case, but worst case will be:

Summary

- Block match using only 48-b pattern is defined to make it consistent with 100G.
- The proposed lock scheme is targeted at a good balance between *low false alignment probability* and *short worst-case lock time*.
- Using FEC decoder status for unlock detection is stated in the current draft.

Appendix: Locking Scheme B

- Assume input BER: ~2e-4
- Assume error propagation probability: 0.65 (<0.75)</p>
- There're 16 nibbles in a 64-b data segment. Excluding BIP fields, we will only match 12 nibbles (i.e., 48 bits out of 64-b segment)
- Block match:: there are no more than 3 nibble errors per 64-b block.
- Lock definition:: 2 consecutive block matches
- Mean time of lock: Tm=1.5 + 9.3e-5 (unit: AM group elapse time)
- False alignment probability: P(false align) ~= 1.0e-17
 → mean time > 20,000 years.