Alignment Marker Lock/Unlock Schemes for 400GE

IEEE P802.3bs, Logic Ad Hoc Dec. 2015

Zhongfeng Wang, Broadcom
Phil Sun, Credo
Mark Gustlin, Xilinx

Current Proposal for AM Patterns

Proposed 400Gb/s AMs

> Re-use 100G AMO from 802.3ba to allow common block lock between lanes of 100G and 400 G , the rest is unique to 400 GbE
> Have a 56b 400 G unique AM per lane also

- $56+64=120 \mathrm{~b}$, putting 120 b on each FEC lane after RS symbol distribution requires 8×257 b AM blocks
- Content of 400 G AMx is TBD

FEC Lane	Reed-Solomon symbol index (10 bit symbols		
0	- AMO $0054000 \mathrm{AMO}_{12}$		
1	AMO	2000 AM1	
2	AMO	2000 Anc	
3	AMO	2000 Ans	
4	AMO	2000 Ams	
5	AMO	2000 Ans	
6	AMO	enocame	
7	AMO	2000 ANT	
8	AMO	2000 Ams	
9	AMO	2000 ane	
10	AMO	4500 am 10	
11	AMO	4500 AM11	
12	AMO	4500 AM12	
13	AMO	4500 AM13	
14	AMO	$400 \mathrm{CaM14}$	
15	AMO	4500 AM15	
$12 \times 10 \mathrm{bFEC}$ symbols wide			

AM Lock Scheme in 100G-KR4

- Input BER: 2.3e-5
- Assume error propagation: 0.42
- If no more than 3 nibbles errors happen in 48-b segment, we claim a "block match".
- If two heading AM blocks in 2 consecutive AM groups are matched by definition, we will enter the "Lock" state.
- Mean time of lock:

Tm=1.5 + 4e-7 (unit: AM group elapse time)

- False alignment probability:

P (false align) $\sim 1.0 \mathrm{e}-17 \rightarrow$ mean time of 1.7 e 5 yrs .

- Worst case lock time:

P (not lock in 6 group delays) < 1.0e-21
\rightarrow mean time > 1.7 e 9 years
The worst scenario: ---v---x---v---x---v---v

Locking Analyses in 400GE

- Assume input BER: ~1e-6
- Assume error propagation probability (EPP): 0.75
- There're 16 nibbles in a 64-b data segment. Excluding the fields that were BIP fields in 802.3bj, we will only match 12 nibbles to keep the lock circuitry consistent between 100 G and 400 G ".
- Block match:: there are no more than 2 nibble errors per 64-b block.
- Lock definition:: 2 consecutive block matches
- Mean time of lock:

Tm=1.5 + 7e-3 (unit: AM group elapse time)
${ }^{\bullet}$ False alignment probability:
P (false align) ~=3.6e-21
\rightarrow mean time $\sim 6 e 7$ years.

- Worst case lock time:

P (not lock in 12 group delays) < 6.8e-21
\rightarrow mean time $>3 e 7$ years
The worst scenario: ---v---x---v---x---v---x---v-x---v----x---v---v

Note: when BER=2e-4, EPP $=0.65$, we get similar results

Use FEC Status for Unlock Detection

- Assume all 16 (or 8) lanes are correctly aligned. But FEC decoding status may provide misleading information.

Consider FLER=6e-11. Thus it is practically impossible to have 3 consecutive un-decodable FEC blocks when correctly aligned.

- Therefore, it is reasonable to claim "unlock" when detecting 3 undecodable FEC blocks.

Use FEC Status for Unlock Detection (II)

- If there's any false alignment, .e.g., offset by 1 bit or 1 symbol for one lane, it will lead to 100+ symbol errors with high probability. In this case, a false decoding may happen. But the probability of false decoding will be much less than $1 \mathrm{e}-13$. A worst case ($\mathrm{p}<1 \mathrm{e}-26$) is given as follows: ---Ud----Ud----Fd---Ud---Ud---Fd---Ud---Ud---Ud, where "Fd" denotes "false decoding of a FEC block", "Ud" stands for a undecodable FEC block.
- In the above case, we take 9 FEC blocks of transmission time to enter "unlock" state when false aligned. This is many orders of magnitudes shorter than using normal AM blocks.
- Note: if setting 2-pair of undecodable FEC blocks as condition, we will have same best case, but worst case will be:
--"Ud--Ud-"---"Fd---Ud"---"Ud---Ud"---"Ud---Fd"---"Ud ---Ud"--"Ud -Ud"

Summary

- Block match using only 48-b pattern is defined to make it consistent with 100G.
- The proposed lock scheme is targeted at a good balance between low false alignment probability and short worst-case lock time.
- Using FEC decoder status for unlock detection is stated in the current draft.

Appendix: Locking Scheme B

- Assume input BER: ~2e-4
- Assume error propagation probability: 0.65 (<0.75)
- There're 16 nibbles in a 64-b data segment. Excluding BIP fields, we will only match 12 nibbles (i.e., 48 bits out of 64-b segment)
- Block match:: there are no more than 3 nibble errors per 64-b block.
- Lock definition:: 2 consecutive block matches
- Mean time of lock:
$\mathrm{Tm}=1.5+9.3 \mathrm{e}-5$ (unit: AM group elapse time)
- False alignment probability:
$P($ false align $) \sim=1.0 \mathrm{e}-17$
\rightarrow mean time $>20,000$ years.
- Worst case lock time:
P (not lock in 12 group delays) $<6.8 \mathrm{e}-22$
\rightarrow mean time > 3e8 years
The worst scenario: ---v---x---v---x---v---X---v-x---v----x---v---v

