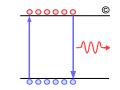


Impact of Transition Density on CDR

Ali Ghiasi IEEE 802.3bs Logic Adhoc Meeting

Feb 16th, 2017

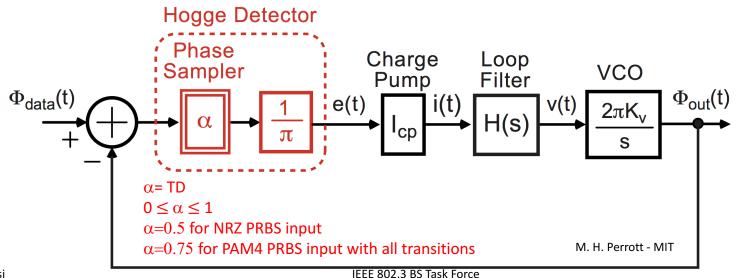

Background

It has been identified that a certain PCS when muxed with specific delay causes reduction transition density

- http://www.ieee802.org/3/bs/public/adhoc/elect/19Dec_16/anslow_01_121916_elect.pdf
- Above contributions analysis the clock content which reduces transition (TD) density based on transition type
 - Symmetrical transition through the signal average nominal TD 25% pathological PCS sequence results in 28% reduction in TD
 - All transitions through signal average nominal TD 50% immune to TD reduction
 - All transitions nominal TD 75% pathological PCS sequence results in 9% reduction in TD
- This contribution analysis impact of transition density reduction on CDR operation given the CDR may use symmetrical transitions, all transitions through signal average, and all transitions.

000000

-///->

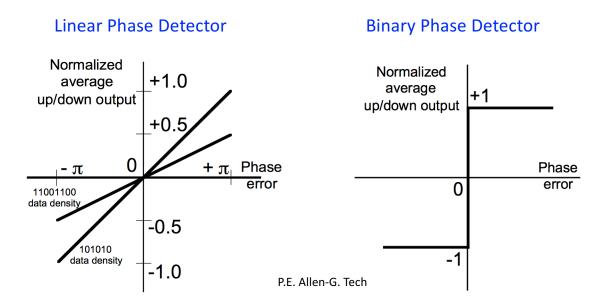


Basic Operation of the CDR

Gold Set use of CDR are the phase detector, charge pump, loop filter and VCO

- Common implementation of phase detector is based on Hogge Detector where TD affects the loop gain and loop BW
- CDR BW = Nominal loop BW \times TD

□ A CDR designed for 802.3bs applications has a BW of 4 MHz assuming nominal PAM4 TD.


A. Ghiasi

3

Transfer Characteristics of the Hogge Phase Detector

Example of linear and binary phase detector

- Linear phase detector response
 - Pattern 11001100 with TD=0.5 has gain of 0.5
 - Pattern 10101010 with TD=1.0 has gain of 1.0
- A sophisticated CDR may have TD detector and accordingly adjust the loop gain to maintain target loop BW
- 8B10B coding run length are limited to 5 bit but TD varies drastically or from 0.3 to 1.0!

How Fibre Channel Guaranteed Interoperability Under Such Large TD Variation?

10's M of 1 Gig FC, 2 Gig FC, and 1 GbE products have been shipped where TD can vary from 0.3 to 1.0 based on 8B10B coding

- FC MJS group defined JTPAT which consist of low TD 7e pattern followed with high TD b5 pattern.

-													
	D30.3 (7e)				D30.3 ((7e)	D30.3 (7e)			D30.3 (7e)			Ι
	0e1			31e			0e1			31e			1
1	1000 0111 00		000	01 1110		0011	1000	0111	0001		1110	0011	1-
	8	7	1		е	3	8	7	1		е	3	1
	Byte = D30.3 is repeated > 167 times.												
	D21.5 (b5)				D21.5 (b5)	D21.5 (b5)			D21.5 (b5)			
	155				155		155			155			
1	1010 1010 10		101	0	1010	1010	1010	1010	1010		1010	1010	1
	a a a		а		а	а	а	а	а		а	а	1
	Byte = D21.5 is repeated > 50 times.												

Table A.10 - JTPAT

Fibre Channel - Methodologies for Jitter and Signal Quality Specification - MJSQ - 2004

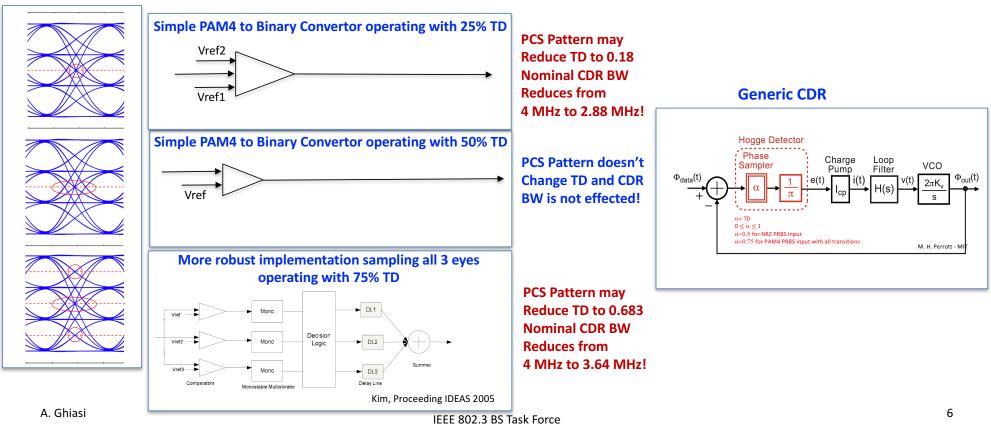
IEEE 802.3 BS Task Force

A. Ghiasi

000000

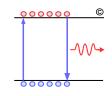
᠕᠕᠕

PAM4 CDR Implementation

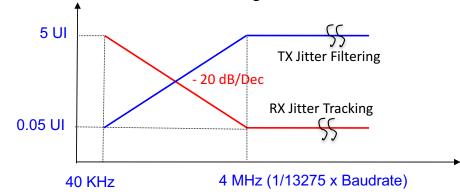

PAM4 CDR architecture is very similar to NRZ with addition of PAM4 to Binary convertor

000000

000000

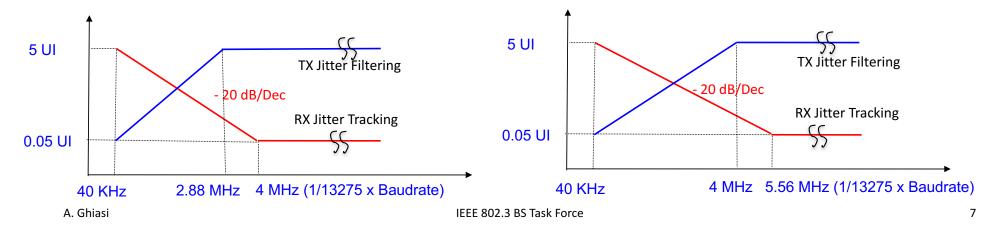

C

-^///->



PAM4 to Binary Convertor

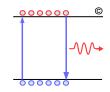
Accommodating TD Reduction with JTOL Test



Current JTOL does not need to change if JTOL test include low TD data pattern

Option I: Tighten TX PLL filter but keep CDR BW at 4 MHz

Option II: Keep TX PLL BW at 4 MHz increase CDR BW to 5.56 MHz


Compliance Method to Verify CDR Operation with Problematic Clock Content

The impact of TD reduction is reduction in the CDR BW from current 4 MHz

- A JTOL test with pathological PCS pattern or a weighted PRBS pattern would be sufficient to guarantee interoperability
- An alternate approach but difficult to enforce or verify would be to require excess CDR BW given the CDR implementation
 - CDR operating with symmetrical transition require nominal CDR BW of ~5.56 MHz
 - CDR operating with all transition through average not impacted by clock content
 - CDR operating with all transitions require only a BW of ~4.36 MHz
- Require all CDR to have ~5.56 MHz BW while keeping TX golden PLL BW at 4 MHz does add extra burden form DSP implementations
- □ Keep CDR BW at 4 MHz but reduce transmitter golden PLL BW to ~2.88 MHz.

000000

-^\/\->

Summary

Given Set up and Set

- Reduction in CDR BW due to TD may result in JTOL failure, reduction in CDR margin, and/or BER
- CDR BW is reduced proportional with reduction in TD
- FC and 1 GbE links with 8b10B encoding have been operating reliably with much larger TD variation (0.3 to 1.0)
- In comparisons an 802.3bs CDR operating on all transitions, TD drops by just 9% to 0.683!

Q Reduction in TD can be accommodated by the CDR in several ways

- Best option would be to add a JTOL test pattern consisting of nominal TD (0.75) section followed by low TD (0.683) section
 - We may still want to keep the PRBS31Q if the above test pattern is not as long
 - Nominal CDR corner frequency stays at current 4 MHz
- Reduce TX golden PLL corner frequency to ~2.88 MHz and keep the 4 MHz CDR BW to allow CDR implementation based on 25%, 50%, or 75% TD
 - Does not require testing with low TD data pattern but tighten transmit jitter unnecessarily for cases where CDR operates with 50% and 75% TD nominally
- Keep TX golden PLL corner frequency at 4 MHz and increase the CDR BW to ~5.56 MHz to allow CDR implementation based on 25%, 50%, or 75% TD
 - Does not require testing with low TD data pattern but forces CDR operating with 50% and 75% TD unnecessarily to have excess BW
 - If allowed CDR implementation must use all transition then CDR corner frequency only needs to increase to 4.36 MHz but how do
 we enforce it!
- □ Any of the above approaches could address clock content issue.

A. Ghiasi

IEEE 802.3 BS Task Force