On clock content issue over four lane interleaving

Ryan Wong, Eric Baden, Rob Stone, Broadcom Limited January 2017

PART I : RESTRICTED BITMUXING

Restricted bitmuxing with larger delays

- Interleaving of "natural pairs" was investigated (FECL [0, 1], [2, 3]...[14, 15])
- For 400GbE, a search for all possible 4:1 restricted bit interleaving together with delays of -50 to +50 bits to form a 100 Gb/s lane shows NONE of them have the clock content curve-shift issue.
- For 200GbE, a search for all possible 4:1 restricted bit interleaving together with delays of -100 to +100 bits to form a 100 Gb/s lane shows NONE of them have the clock content curve-shift issue.

For 200G

- n=7
- 100 <= delay1,delay2,delay3 <= 100
 <u>For 400G</u>
- n=15
- -50 <= delay1,delay2,delay3 <= 50

PART II : TURNING OFF GRAY CODING

Why turning off Gray coding doesn't help?

All transitions

Gray coding	Binary coding					
(1, <mark>0</mark>) -> +3	(1 ,1) -> +3					
(1, <mark>1</mark>) -> +1	(1, <mark>0</mark>) -> +1					
(0,1) -> -1	(0,1) -> -1					
(0,0) -> -3	(0,0) -> -3					

5

GC BC	GC	BC	GC	BC	GC	BC
-3 -> -3 -> -3	-1 -> -3 —	→ -1 -> -3	+1 -> -3 -	→ +3 -> -3	+3 -> -3 —	→ +1 -> -3
-3 -> -1 -> -3 -> -1	-1 -> -1	-1 -> -1	+1 -> -1 -	→ +3 -> -1	+3 -> -1 —	→ +1 -> -1
-3 -> +1	-1 -> +1 —	→ -1 -> +3	+1 -> +1	+3 -> +3	+3 -> +1	→ +1 -> +3
-3 -> +3 -> -3 -> +1	-1 -> +3 —	→ -1 -> +1	+1 -> +3 -	→ +3 -> +1	+3 -> +3	+1 -> +1

• Every transition has been accounted for and no new transitions are created

PART III: FOUR LANE INTERLEAVING WITH PRECODING

Baseline results

- With no changes to 802.3bs PCS
 - Lane = [0, 5, 6, 7]/ Delay = [0, 9, 1, 9] experiences cc curve shift
 - Lane = [0, 5, 6, 7]/ Delay = [0, 9, 1, 8] does NOT experience cc curve shift and aligns well with random data
 - Lane = [0, 5, 6, 7]/ Delay = [0, 9, 1, 10] does NOT experience cc curve shift but is slightly wider than random data

200GbE clock, all transitions (baseline behavior) -Lane=[0, 5, 6, 7]/Delay=[0, 9, 1, 9]

200GbE clock, all transitions (baseline behavior) -Lane=[0, 5, 6, 7]/Delay=[0, 9, 1, 8]

200GbE clock, all transitions (baseline behavior) -Lane=[0, 5, 6, 7]/Delay=[0, 9, 1, 10]

10

A proposed fix to the cc shift through precoding

• Precoding is used to mitigate burst errors, as defined in 135.5.8 for 802.cd.

- See p.5 of <u>parthasarathy 01 0911</u> for a worked example
- See anslow 070616 3cd 01 adhoc for FEC analysis
- Included as optional to use, mandatory to implement in 802.3cd
- Can be seen as a "scrambler" on each physical lane to remove the cc shift behavior.

Results of precoding

- With precoding,
 - Lane = [0, 5, 6, 7]/ Delay = [0, 9, 1, 9] is shifted back but slightly wider than random data
 - Lane = [0, 5, 6, 7]/ Delay = [0, 9, 1, 8] is unchanged and still aligns well with random data
 - Lane = [0, 5, 6, 7]/ Delay = [0, 9, 1, 10] is slightly widened than without precoding

200GbE clock, all transitions -Lane=[0, 5, 6, 7]/Delay=[0, 9, 1, 9]

200GbE clock, all transitions -Lane=[0, 5, 6, 7]/Delay=[0, 9, 1, 8]

14

200GbE clock, all transitions

-Lane=[0, 5, 6, 7]/Delay=[0, 9, 1, 10]

400GBE RESULTS

400GbE clock, all transitions -Lane=[0, 2, 4, 10]/Delay=[0, 1, 0, 2]

400GbE clock, all transitions -Lane=[7, 12, 1, 13]/Delay=[0, 7, -2, 1]

Effect of error multiplication of precoding -~0.5dB degradation in terms of SNR (single part link)

Precoding Summary

- A search of all possible combinations of 200GbE PCS lanes for 4:1 bit interleaving together with delays of -40 to +40 bits to form a 100 Gb/s lane shows NONE of them have the curve-shift issue with the inclusion of precoding.
- A search of all possible combinations of 400GbE PCS lanes for 4:1 bit interleaving together with delays of -10 to +10 bits to form a 100 Gb/s lane shows NONE of them has the curve-shift issue with the inclusion of precoding.
- With precoding, the distribution may be slightly widened for some combinations, see the previous slides for such an example.
- With precoding, error multiplication brings a performance degradation of ~0.5dB in terms of SNR (electrical domain).

THANK YOU