400GbE AMs revised proposal

Pete Anslow, Ciena

IEEE P802.3bs Task Force, Logic Ad Hoc, 8 January 2016

Introduction

A set of alignment markers for 400GbE was proposed in anslow 011215 logic. The worst case performance of the proposed codes was analysed for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes and found to have a large "shoulder" on the clock content for "all transitions" (page 22).

In discussion on the Logic Ad Hoc call and also in association with wangz 011215 logic, it was proposed to reduce the length of the common part of the AMs to 48 bits rather than 64 bits.

Reducing the unique part of the AMs to also be 48 bits long gives AMs 96 bits long in total, which will fit in 6×257-bit blocks with only 6 bits set to the free-running PRBS9.

To further improve the transition density for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes it is also proposed to make the 48-bit common part based on AM6 for 100GbE as it has more transitions than AM0.

Baseline wander

Previous NRZ contributions have used a "baseline wander" parameter
This was defined as:
Baseline wander is the instantaneous offset (in \%) in the signal generated by AC coupling at the Baud rate / 10,000.

This analysis re-uses this definition unmodified, but it should be noted that for PAM4, the eye height is $1 / 3$ that of NRZ so the effects of a given amount of baseline wander will be greater.

For NRZ contributions see:
P802.3ba anslow 010108
P802.3ba anslow 061108
P802.3bj anslow 01a 0112

Clock content

Previous NRZ contributions have also used a "clock content" parameter defined as:

Create a function which is a 1 for a transition and a 0 for no transition and then filter the resulting sequence with a corner frequency of Baud/1667. (See additional slides for a corner frequency of Baud/5313)

This analysis re-uses this definition unmodified but defines a transition as one of three possibilities (as per healey 3bs 01 1115):

- Symmetrical transitions through the signal average
- Transitions through the signal average
- All transitions

Clock content illustration

Symmetrical transitions through the signal average

Transitions through the signal average

All transitions

Revised alignment markers

This contribution (and comment \#146 against D1.1) proposes 96-bit alignment markers with a 48 -bit common part of " $0 \times 9 \mathrm{~A}, 0 \times 4 \mathrm{~A}, 0 \times 26$, $0 \times 65,0 x B 5,0 x D 9$ " followed by a 48-bit unique part.

The 48-bit unique parts of the alignment markers are composed of the first three bytes of the unique parts in anslow 011215 logic followed by their inverse.

The proposed markers are shown on the next page.

Revised alignment marker proposal

Table 119-1—400GBASE-R Alignment marker encodings

$\begin{gathered} \text { PCS } \\ \text { lane } \\ \text { number } \end{gathered}$	$\left\{\mathrm{CM}_{0}, \mathrm{CM}_{1}, \mathrm{CM}_{2}, \mathrm{CM}_{3}, \mathrm{CM}_{4}, \stackrel{\mathrm{CM}_{5}}{\text { Encoding }^{\mathrm{a}}}, \mathrm{UM}_{0}, \mathrm{UM}_{1}, \mathrm{UM}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}\right\}$
0	0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9, 0x9E, 0xEB, 0x $27,0 \times 61,0 \times 14,0 \times \mathrm{D} 8$
1	0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9, 0x50, 0x74, 0x88, 0xAF, 0x8B, 0x77
2	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times B 4,0 \times B 7,0 \times E A, 0 \times 4 B, 0 \times 48,0 \times 15$
3	0x9A, $0 \times 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \times 65,0 \times B 5,0 \times D 9,0 x E 4,0 x F B, 0 x F 1,0 x 1 B, 0 x 04,0 \mathrm{x} 0 \mathrm{E}$
4	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times D C, 0 \times 58,0 \times E E, 0 \times 23,0 \times A 7,0 \times 11$
5	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times B D, 0 \times A 9,0 \times B F, 0 \times 42,0 \times 56,0 \times 40$
6	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times 97,0 \times 67,0 \times 77,0 \times 68,0 \times 98,0 \times 88$
7	0x9A, 0x4A $, 0 \times 26,0 \times 65,0 \times B 5,0 \times D 9,0 \times 24,0 \times 35,0 \times 45,0 \times D B, 0 \times C A, 0 \times 5 A$
8	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times 57,0 \times 64,0 \times 51,0 \times A 8,0 \times 9 B, 0 x A E$
9	0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9, 0x28, 0xF9, 0x3E, 0xD7, 0x06, 0xC1
10	0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD $9,0 \mathrm{xCB}, 0 \mathrm{xD} 1,0 \mathrm{xAD}, 0 \mathrm{x} 34,0 \mathrm{x} 2 \mathrm{E}, 0 \mathrm{x} 52$
11	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times 5 \mathrm{E}, 0 \mathrm{x} 1 \mathrm{E}, 0 \times 38,0 \times \mathrm{A} 1,0 \times \mathrm{EE} 1,0 \mathrm{xC7}$
12	0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9, 0x19, 0x98, 0xF9, 0xE6, 0x67, 0x06
13	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times 84,0 \times E C, 0 \times 20,0 x 7 B, 0 \times 13,0 \times D F$
14	0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9, 0x13, 0xA4, 0xED, 0xEC, 0x5B, 0x12
15	0x9A, 0x4A, 0x $26,0 \times 65,0 \times B 5,0 \times D 9,0 \times 3 \mathrm{~F}, 0 \times 8 \mathrm{~A}, 0 \times \mathrm{BE}, 0 \times \mathrm{C} 0,0 \times 75,0 \times 41$

[^0]
Simulations

Using these new alignment codes, all possible combinations of PCS lanes for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes were then analysed to find the worst cases for Baseline Wander (BW) and Clock Content (CC) after Gray coding to PAM4 symbols. These searches included lane delays of -20 to +20 as per the previous analysis for the 4:1 case. (The searches for Baud/5313 were -15 to +15.)

The worst case PCS lane combinations and delays were then used to generate the worst case PDFs for 400 GbE scrambled idle $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

Scrambled idle construction

The scrambled idle symbol streams generated for this analysis were:

- Idle control characters
- 256B/257B transcoded
- Scrambled
- Distributed 10 bits at a time to two FEC codewords which start with alignment markers and 6 bits of PRBS9 one in every 8192 code words
- 300 bits of $\operatorname{RS}(544,514)$ FEC parity added
- Interleaved 10 bits at a time to form PCS lanes (option 8a)
- Bit interleaved with worst case PCS lane combinations and delays

The results for baseline wander and clock content are in the following slides with the results for the previous proposal followed by those for the new proposal to aid comparison. For the clock content slides there are also plots for Baud/5313.

Baseline wander, 100G lanes, previous proposal

10,000 year limit
10,000 year limit

Baseline wander, 100G lanes, new proposal

Clock, sym trans thro ave, 100G lanes, previous

Clock, sym trans thro ave, 100G lanes, new

Clock, sym trans thro ave, 100G, new, Bd/5313

Clock, trans through ave, 100G lanes, previous

Clock, trans through ave, 100G lanes, new

Clock, trans through ave, 100G, new, Bd/5313

Clock, all transitions, 100G lanes, previous

Clock, all transitions, 100G lanes, new

Clock, all transitions, 100G lanes, new, Bd/5313

Effect of common part of lane marker, 4:1

Worst case clock content for all transitions, 100G lanes. Common part of alignment marker gives 96 symbols as below for zero skew:

Conclusion

The baseline wander and clock content for the revised alignment marker proposal still show a "shoulder", but they are within the baseline wander and clock content for the PRBS31Q test pattern.

It is therefore proposed to use this alignment marker scheme for 400 Gb/s Ethernet in accordance with comment \#146 against P802.3bs D1.1

Backup

Worst case lane combinations revised proposal

4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes

	First lane	Second lane	Third lane	Fourth lane	First lane delay	Second lane delay	Third lane delay	Fourth lane delay
wander_max	0	6	5	15	0	0	-5	-5
wander_min	0	1	2	3	0	1	-7	17
clock25_max	0	1	2	3	0	-19	1	-19
clock25_min	2	7	4	14	0	0	15	15
clock50_max	0	1	2	3	0	19	-18	-11
clock50_min	12	0	14	1	0	15	-1	14
clock75_max	0	1	2	3	0	-2	-2	-1
clock75_min	6	14	10	12	0	0	0	0

Thanks!

[^0]: ${ }^{a}$ Each octet is transmitted LSB to MSB.

