1x400GE FEC Implementation

Martin Langhammer Altera Corporation June 19, 2015

1x400GE Problem (and a fix)

(544%128)!=0

Gearbox in Time (run faster to have a constant input pattern) 128 width

Gearbox in Width (run faster to have a constant input pattern) 136 width

Requires Gearbox(es) Requires Multi-clocks

< Build Decoder with continuous input pattern

- 128 symbol width
- Direct interface to PMA and PCS
- < Now working functionally and FPGA fit

FPGA KP4 Resources (ALM \equiv 6LUT)

- < 100G KP4 : 19K ALMs
 - 4x100G:78K ALMs
 - Improved from November 2014 results
- < 400G KP4 (4 x 136 symbols): 70K ALM
- < 400G KP4 (128 symbol continuous): 70K ALM
- 1x400G continuous throughput same size as simple input styles
 - More complex algorithm and logic
 - Offset by slightly smaller datapath
- < 1x400G slightly smaller than 4x100G

FPGA Use Considerations

FPGA system implications

- Area of 1x400G smaller than 4x100G
- But 4x100G has a more decomposable routing congestion
 - Easier to fit automatically, possibly lower speed grade device
 - Time and cost consideration
- Probably not significant reason, especially consideration likely production device technology

FPGA Resource Ratios

- 1x400G KP4 decoder
 fraction of likely target
 FPGAs
- Similar area roadmap from all major FPGA manufacturers

1x400GE FEC ASIC

ASIC continuous throughput simpler pattern than FPGA continuous throughput

- Largely because of 2x clock rate
- < Simpler design
 - Simpler control structure
 - Narrower datapaths

Conclusions

< 1x400G KP4 FEC can be made integration friendly

- Direct connect interface with a single clock domain
- < 1x400G FEC options relatively constant area
- FPGA fitting may be more difficult at 1x400G
- Advantages of choosing 1x400G appear to outweigh disadvantages

Comments? Questions?

Thank You