FEC Core Area Comparison and Model

Martin Langhammer October 21, 2012

Overview

- This presentation will show the relative areas of FEC cores used in recent 802.3bs meetings
 - Focusing on Reed Solomon and BCH
- A modelling method will be introduced to allow a quick area calculation for similar types of cores
 - Only primary school math required
- Quick tutorial on Reed Solomon and BCH core architectures
 - Block diagrams

Caveats

This presentation does not consider the merits of any FEC

- Gain
- Latency
- Suitability for a channel or application
- This presentation introduces a model to allow a relative area comparison of different Reed Solomon and BCH FECs
 - Based on codeword parameters (n,k)
 - Throughput important consideration (parallelism)
 - Monolithic or individual pipes

Modelling Complications - FPGA vs. ASIC

Memory vs. Logic

- FPGA has some amount of memory blocks interspersed with logic
 - Subfield Inversion (polynomial calculation, Forney)
 - Delay lines

Different types of logic

- FPGA typically basic building block 6 input LUT (look up table)
 - (Altera: ALM, Xilinx: 6LUT)
- FPGA Registers free with logic

Performance

- ASIC typically 650MHz, 2 clocks per polynomial iteration¹
- FPGA typically 325MHz, >>2 clocks per iteration
- Latency vs. Latency
 - 100ns ASIC vs. 250-350ns FPGA
- Summary: exact comparison cannot be made, too many variables
 - First model will ignore effects of registers on area
 - 1. Wang_z_3bs_01_0914 "In 100G KR, parallelism for RS-FEC is best set as 160bits/cyc."

Modelling Complications - FPGA vs. FPGA

Different FPGA speed grades

– Slow, Medium, Fast (significant premium)

Medium typically 325 MHz+

- 330 bit wide input = 100Gbps
- Fast typically 475 MHz
 - 220 bit wide input = 100 Gbps
- Latency longer systolic array polynomial calculation
- New high performance 100G FPGA RS core
 - Lower latency
 - Not in this analysis

Will focus on current technology, medium speed grade

- Volume production part 2012 released technology
- Available FEC Core
- 325 MHz pushbutton (non-constrainted) performance for any Reed Solomon and BCH parameters

FEC Core Sizes

Туре	Codeword	Area (6LUT)	Relative Area
RS KR4	(528,514,7)	10654	1
RS KP4	(544,514,15)	26554	2.5
BCH ¹	(2858,2570,24)	106806	10
BCH ²	(9193,8192,71)	425000	40

1. Cole_3bs_02b_0914 2.Takahara_3b_01a_0914

All results for mid-speed grade 28nm FPGA devices^{3,4}

2012 production devices
mid range volume devices 200K-400K 6LUT

Reed Solomon vs. BCH Considerations

Syndromes

- Reed Solomon: calculate every syndrome
- BCH: calculate odd syndromes, generate even syndromes by GF()²

Polynomial Calculation

- Reed Solomon: 2t iterations
- BCH: t iterations

Error Location and Value Calculation

- Reed Solomon: Chien and Forney
- BCH: Chien only

BCH GF() > RS GF()

Area scaling proportional to GF()²

BCH t >> RS t for same gain

RS symbol based, BCH bit based, so t normalized = t/GF()

BCH OH >> RS OH

BCH implementation simpler, but larger

Reed Solomon vs. BCH Area Calculation

Syndromes

- Reed Solomon: $p_{rs} \times m_{rs} \times t_{rs}$
- BCH: *p_{bch}/m_{bch}* * *t_{bch}* * 0.6
 - Effect of parallelism cancels out, somewhat larger

Polynomial Calculation

- Reed Solomon: t_{rs}^2
- BCH: t_{bch}²/2 x 0.8
 - $t_{bch} >> t_{rs}$, a lot larger

Error Location and Value Calculation

- Reed Solomon: $p_{rs} x t_{rs}$
- BCH: **p**_{bch} * **t**_{bch} * **0.375**
 - $t_{bch} >> t_{rs} and p_{bch} >> p_{rs}$, significantly larger

Worked Example – Reed Solomon to Reed Solomon

RS(528,514,7) @ 10654 6LUT=> RS(544,514,15) @ 26554 6LUT

- Overall Scaling (GF()₁/GF()₂)² = 1
- Syndrome : 20% Area
 - Scaling $(t_1/t_2) = (15/7) = 2.15x$
- Polynomial Calculation : 35%55% Area
 - Scaling $(t_1/t_2)^2 = 2.15^2 = 4.6x$
- Correct (Chien, Forney) : 25%-45% Area
 - Scaling 1: (t_1/t_2)

- Scaling 2: 0.75 (baseline Forney calculation)

Total (0.2*2.15) + (0.4*4.6) + (0.4*1.6) = 2.9

- Difference due to systolic array scaling - more efficient for longer vs. medium numbers

Worked Example – Reed Solomon to BCH

RS(528,514,7) @ 10654 6LUT => BCH (2858,2570,24) @ 106806 6LUT

- Overall Scaling (GF()₁/GF()₂)² = 1.44
- Syndrome : 20% Area => 7% Area
 - Scaling 1: 0.6 (BCH syndromes odd only, use S^2 for even symbols) 2.1x

4.7x

- Scaling 2: $(t_1/t_2) = (24/7) = 3.4x$

Polynomial Calculation : 35%55%=> 30%40%Area

- Scaling 1: $(t_1/t_2)^2 * 1/2 = 5.9$
- Scaling 2: 0.8 (no Ω)

Correct (Chien Only) : 25%45% Area => 55%65% Area

- Scaling 1: $(\mathbf{p}_1/\mathbf{p}_2) = (330/33) = 10$
- Scaling 2: $(t_1/t_2) = (24/7) = 3.4$ 12.5x
- Scaling 3: No Forney : 0.5*.75 = 0.375 _
- Total 1.44(.20*2.1 + .4(4.7) + .4*12.5) = 10.5

Next Steps

Power modelling

- BCH and Reed Solomon have similar peak power requirements
 - Proportional to area
- BCH likely greater sustained power requirements
 - Error threshold switching

More complex analysis

- Complicated by lack of definitive area model

Summary

Accurate modelling difficult

- Technology differences ASIC/ASIC, ASIC/FPGA, FPGA/FPGA
- Different algorithms polynomial calculations

BCH and Reed Solomon not apples to apples comparison

- Proposed codes have different gains
- Gain vs. Gain differences depending on channel
- Different error tolerances to bursts

In general BCH more expensive than Reed Solomon

- Larger field
- Longer t
- Greater *p*

