FEC Core Area Comparison and Model

Martin Langhammer
October 21, 2012

Overview

- This presentation will show the relative areas of FEC cores used in recent 802.3bs meetings
- Focusing on Reed Solomon and BCH
- A modelling method will be introduced to allow a quick area calculation for similar types of cores
- Only primary school math required
- Quick tutorial on Reed Solomon and BCH core architectures
- Block diagrams

Caveats

- This presentation does not consider the merits of any FEC
- Gain
- Latency
- Suitability for a channel or application
- This presentation introduces a model to allow a relative area comparison of different Reed Solomon and BCH FECs
- Based on codeword parameters (n, k)
- Throughput important consideration (parallelism)
- Monolithic or individual pipes

Modelling Complications - FPGA vs. ASIC

- Memory vs. Logic
- FPGA has some amount of memory blocks interspersed with logic
- Subfield Inversion (polynomial calculation, Forney)
- Delay lines
- Different types of logic
- FPGA typically basic building block 6 input LUT (look up table)
- (Altera: ALM, Xilinx: 6LUT)
- FPGA Registers free with logic
- Performance
- ASIC typically $650 \mathrm{MHz}, 2$ clocks per polynomial iteration ${ }^{1}$
- FPGA typically $325 \mathrm{MHz}, \gg 2$ clocks per iteration
- Latency vs. Latency
- 100ns ASIC vs. 250-350ns FPGA
- Summary: exact comparison cannot be made, too many variables
- First model will ignore effects of registers on area

1. Wang_z_3bs_01_0914 "In 100G KR, parallelism for RS-FEC is best set as 160bits/cyc."

MEASURABLE ADVAVTAGE*

Modelling Complications - FPGA vs. FPGA

- Different FPGA speed grades
- Slow, Medium, Fast (significant premium)
- Medium typically 325 MHz+
- 330 bit wide input $=100 \mathrm{Gbps}$
- Fast typically 475 MHz
- 220 bit wide input $=100$ Gbps
- Latency longer - systolic array polynomial calculation
- New high performance 100G FPGA RS core
- Lower latency
- Not in this analysis
- Will focus on current technology, medium speed grade
- Volume production part - 2012 released technology
- Available FEC Core
- 325 MHz pushbutton (non-constrainted) performance for any Reed Solomon and BCH parameters

Reed Solomon and BCH Block Diagrams

delay line

20%

$35 \%-55 \%$
delay line

7%

$30 \%-40 \%$

$50 \%-65 \%$

Reed Solomon

BCH

FEC Core Sizes

Type	Codeword	Area (6LUT)	Relative Area
RS KR4	$(528,514,7)$	10654	1
RS KP4	$(544,514,15)$	26554	2.5
BCH 1	$(2858,2570,24)$	106806	10
BCH 2	$(9193,8192,71)$	425000	40

1. Cole_3bs_02b_0914
2.Takahara_3b_01a_0914

All results for mid-speed grade 28nm FPGA devices ${ }^{3,4}$

3. 2012 production devices
4. mid range volume devices 200K-400K 6LUT

Reed Solomon vs. BCH Considerations

- Syndromes
- Reed Solomon: calculate every syndrome
- BCH: calculate odd syndromes, generate even syndromes by GF() ${ }^{2}$
- Polynomial Calculation
- Reed Solomon:2t iterations
- BCH: titerations
- Error Location and Value Calculation
- Reed Solomon: Chien and Forney
- BCH: Chien only
- BCH GF() > RS GF()
- Area scaling proportional to GF() ${ }^{2}$
- BCH t >> RS t for same gain
- RS symbol based, BCH bit based, so \boldsymbol{t} normalized $=\boldsymbol{t} / \mathrm{GF}()$
- $\mathrm{BCH} \mathrm{OH} \gg \mathrm{RS} \mathbf{O H}$

BCH implementation simpler, but larger

MEASURABLE ADVANTAGE:

Reed Solomon vs. BCH Area Calculation

- Syndromes
- Reed Solomon: $\boldsymbol{p}_{r s} \boldsymbol{x} \boldsymbol{m}_{r s} \boldsymbol{x} \boldsymbol{t}_{\text {rs }}$
- BCH: $\boldsymbol{p}_{b c h} / m_{b c h}{ }^{*} \boldsymbol{t}_{b c h}{ }^{*} 0.6$
- Effect of parallelism cancels out, somewhatlarger
- Polynomial Calculation
- Reed Solomon: $\boldsymbol{t}_{\text {rs }}{ }^{2}$
- BCH: $\boldsymbol{t}_{b c h}{ }^{2 / 2} \mathbf{x} 0.8$
- $t_{b c h} \gg t_{r s}$, a lot larger
- Error Location and Value Calculation
- Reed Solomon: $\boldsymbol{p}_{r s} \boldsymbol{x} \boldsymbol{t}_{\text {rs }}$
- BCH: $\boldsymbol{p}_{\text {bch }}{ }^{*} \boldsymbol{t}_{\text {bch }}{ }^{*} 0.375$
- $t_{b c h} \gg t_{r s}$ and $p_{b c h} \gg p_{r s}$, significantly larger

Worked Example - Reed Solomon to Reed Solomon

RS(528,514,7) @ 10654 6LUT=> RS($544,514,15$) @ 26554 6LUT

- Overall Scaling $\left(\operatorname{GF}()_{1} / \mathrm{GF}()_{2}\right)^{2}=1$
- Syndrome : 20\% Area
- Scaling $\left(t_{1} / t_{2}\right)=(15 / 7)=2.15 x$
- Polynomial Calculation : 35\%55\% Area
- Scaling $\left(t_{1} / t_{2}\right)^{2}=2.15^{2}=4.6 x$
- Correct (Chien, Forney) : 25\%45\% Area
- Scaling 1: $\left(\boldsymbol{t}_{1} / \boldsymbol{t}_{2}\right)$
- Scaling 2: 0.75 (baseline Forney calculation) $\} 1.6 x$
- Total $\left(0.2^{* 2.15)}+\left(0.4^{*} 4.6\right)+\left(0.4^{*} 1.6\right)=2.9\right.$
- Difference due to systolic array scaling - more efficient for longer vs. medium numbers

MEASURABLE ADVANTAGE*

Worked Example - Reed Solomon to BCH

RS($528,514,7$) @ 10654 6LUT => BCH $(2858,2570,24)$ @ 106806 6LUT

- Overall Scaling $\left(\operatorname{GF}()_{1} / \mathrm{GF}()_{2}\right)^{2}=1.44$
- Syndrome : 20\% Area => 7\% Area
- Scaling 1: $0.6\left(\mathrm{BCH}\right.$ syndromes odd only, use \boldsymbol{S}^{2} for even symbols) $\} 2.1 \mathrm{x}$
- Scaling $2:\left(\boldsymbol{t}_{1} / \boldsymbol{t}_{2}\right)=(24 / 7)=3.4 \mathrm{x}$
- Scaling 2: $\left(t_{1} / t_{2}\right)=(24 / 7)=3.4 x$
- Polynomial Calculation : 35\%55\%=> 30\%40\%Area
- Scaling $1:\left(t_{1} / t_{2}\right)^{2 *} 1 / 2=5.9$
- Scaling 2: 0.8 (no Ω)

4.7x
- Correct (Chien Only) : 25\%45\% Area => 55\%65\% Area
- Scaling 1: $\left(\boldsymbol{p}_{1} / \boldsymbol{p}_{2}\right)=(330 / 33)=10$
- Scaling 2: $\left(\boldsymbol{t}_{1} / \boldsymbol{t}_{2}\right)=(24 / 7)=3.4$ $12.5 x$
- Scaling 3: No Forney : $0.5^{*} .75=0.375$

■ Total 1.44(.20*2.1 + . $\left.4(4.7)+.4^{*} 12.5\right)=10.5$

Next Steps

- Power modelling
- BCH and Reed Solomon have similar peak power requirements
- Proportional to area
- BCH likely greater sustained power requirements
- Error threshold switching
- More complex analysis
- Complicated by lack of definitive area model

Summary

- Accurate modelling difficult
- Technology differences - ASIC/ASIC, ASIC/FPGA, FPGA/FPGA
- Different algorithms - polynomial calculations
- BCH and Reed Solomon not apples to apples comparison
- Proposed codes have different gains
- Gain vs. Gain differences depending on channel
- Different error tolerances to bursts
- In general BCH more expensive than Reed Solomon
- Larger field
- Longer t
- Greater p

Thank You

