FEC Core Area Comparison and Model

Martin Langhammer October 21, 2012

Overview

- Motivation
- Caveats
- Results
- Background
- Next Steps

Motivation

- Reed Solomon used in 100GE, likely to find use in 400GE
- This presentation is to give confidence that we have not reached end point in direct implementation of Reed Solomon
- Show that published algorithms, current commercial devices are enough to deliver Reed Solomon for the forseeable future
 - Multi-Tbps monolithic performance

Caveats

- This presentation does not suggest that Reed Solomon is the best FEC for future standards
 - Only that it can scale to much higher speeds easily
- Monolithic FEC may not be the best approach
 - Monolithic FECs required for multi-Tbps aggregation
 - Alternate approach may distribute FECs across multiple links

Results - Encoder

KR4 RS (528,514,7)

Logic only implementation

- FPGA 4LUT/6LUT independent
- ASIC direct synthesis

Relatively area efficient

– 40K 6LUT

High performance

- 2.5 Tbps
 - 475MHz @ 5280 bits
- Performance scaling possible
 - Area/performance tradeoff
 - Unlikely to be linear

Very low latency

3 clock cycles (6ns)

┨ • 💕 🖏 • 🖏 N 🖪 🏶 🏦 🖪 남 남 1+ 451 1{510} {5. 510 511 'n 512 513 514 ľn 515 10 516 lo. 517 10 518 10 519 520

FPGA basic building block is 6 input look up table + register

FPGA Technology Scaling

40nm FPGA – 2009 production

- 100K 6LUT (mid range) 250K 6 LUT (high end)
- 2.5 Tbps @ 40K 6LUT
 - Normalized 100 Gbps = 1.6K 6LUT
 - Normalized 400 Gbps = 6.4K 6LUT

28nm FPGA – 2012 production

200K 6LUT – 400K 6LUT

20nm FPGA – 2015 production

– 200K 6 LUT – 500K 6LUT

FinFET FPGA – 2017 production

– 500K 6LUT – 1M 6LUT

N.B. handwaving numbers – to show practicality of implementing future performance in currently available or planned devices

Cauchy Matrix Based Encoding

Common Encoding:

- $p(x) + x^{(n-k)}m(x) = c(x)$
- p(x) is the reminder of the division of $x^{(n-k)}m(x)$ by g(x)
- Finding p(x) requires a division circuit (very difficult to parallelize!)

Matrix based Encoding RS generator matrix has a Vandermond structure e.g G = It can be put in systematic form as: $\widetilde{G} = V^{-1}G = \begin{bmatrix} I & P \end{bmatrix}$

– Encoding is performed by direct multiplication $\mathbf{c} = \mathbf{m}. \widetilde{\mathbf{G}}$

Seroussi encoder [1]

- Systematic generator matrix indices are: $p_{ij} = \frac{\alpha^{i-k-j} \prod (\alpha^{n-1-k-j} \alpha^{n-1-t})}{\alpha^{n-i-1} + \alpha^{n-k-j-1} \prod_{t \neq i} (\alpha^{n-1-i} \alpha^{n-1-t})}$
- With a *relatively* simple recurrence relation between p_{ij} and p_{i+1j} leading to a possible systolic architecture

[1] G.Seroussi, IEEE Trans. on Inf. Theory, Vol.137, no.4, 1991

Next Steps

- Other encoder design examples (KP4)
- Multi-Tbps Decoder

Conclusions

Reed Solomon is scalable to multi-Tbps applications

- No new FPGA technology required
 - Next generation FPGA technology will be even faster, more cost effective
- Will work in any technology (such as ASIC)
- Effective low area/performance ratio
- Low latency

