

FEC Structures for 400GbE Supporting Multi-PMDs

Zhongfeng Wang, Broadcom Corp., USA

IEEE P802.3bs, ad hoc group meeting. Oct. 2014

MOTIVATION

 To introduce a new and detailed FEC structure (in addition to three FEC strategies presented so far) for the consideration of 400GbE.

POSSIBLE FEC STRATEGY FOR 400GBE

Three FEC strategies were discussed in May meeting (gustlin_3bs_02_0514)

- End to end
- 2) Segment by segment
- 3) Encapsulated FECs

• The following strategy was discussed in Sep. meeting [1]

- 1) Use (interleaved) RS(528, 514) code as base FEC
- 2) Add extra parity at PMD level

[1] Z. Wang, "FEC Configuration Analyses for 400Gb Ethernet," Sep. 2014. http://www.ieee802.org/3/bs/public/14_09/wang_z_3bs_01_0914.pdf

PREVIOUSLY DISCUSSED FEC CODES [2]

- KR4 FEC: RS(528, 514, t=7, m=10) : 1.0X HW
- KP4 FEC: RS(544, 514, t=15, m=10): 2.5X HW
- BCH1 (2858, 2570, t=24): CG ~ 8.7dB, 10X HW
- BCH2 (9193, 8192, t=71): CG > 9.0dB, 40X HW
- We are not ready to specify target CG for FEC as modulation scheme and channel specification are not finalized yet.
- Previous presentations seem to suggest
 - No stronger code than KP4-FEC may be needed with NRZ modulation
 - CG of 8+ dB may be needed with PAM4 modulation (in some case)
 - CG of 9+ dB may be needed with DMT modulation (in some case)

[2] M. Langhammer, "FEC Core Area Comparison and Model," IEEE 400GbE ad hoc meeting, Oct., 2014

- In practice, either KR4 or KP4 FEC is easy to implement and not much power-consuming.
- To achieve a CG of 9+dB, using BCH2 is neither power efficient nor hardware efficient (see [2]). Need consider a better method.
- This presentation will focus on FEC structures for PAM4 modulation. Extension to DMT modulation is possible.

REVISIT MULTI-LEVEL CODING (MLC)

 One (generic) MLC scheme for communication systems based on PAM4 modulation is shown below, where P/S denotes parallel-to-serial conversion, and "Enc-1" and "Enc-2" denote encoder for Code-1 and Code-2 respectively.

A PROPOSED FEC STRUCTURE

- A multi-mode FEC structure based on distributed MLC concept.
- The MLC encoding process is done in 2 separate locations.
- Code-1 can select KR4 FEC or any other light FEC.
- Code-2 uses a strong FEC. It can also be an umbrella code consisting of mother code and daughter code.
- Ex-1: Code-1 uses KR4 FEC, m=69, n=63
 Code-2 uses RS(552, 504, t=24, m=10). OC =4.5%
- Ex-2: Code-1 uses RS(520, 514, t=3), OC=3%
 - Inner mother code: RS(544, 496, t=24),
 - Inner daughter code: RS(272, 248, t=12).

ANALYSES

- Noise1+noise3 will be handled by 1st FEC.
- Noise2 will be mainly handled by 2nd FEC.
- Being different from any of 3 existing FEC strategies:
 - No immediate decoder after 1st encoder
 - Code-1 is collaborating with Code-2.
- Ensure fixed data rate for CDXI-n
- Decoding is done in two steps, which can correct errors occurred in different segments.
- As strong FEC only covers half data rate, overall FEC power consumption is significantly reduced.

ANALYSES (CONT'D)

- Switch doesn't need to embed strong FEC.
- If burst errors are well controlled, either code-1 or code-2 can be selected as BCH code.
- To support multi-PMDs, one
 - Can let Code-2 use umbrella code to provide tradeoffs between coding gain, power, and latency while ensuring same clocking rate all the time
 - Can bypass 2nd part of MLC encoding for good channels
 - Could have different redundancy ratio in the 2nd portion of MLC encoding for different PMDs.

FEC CANDIDATE CODE WITH 8+DB CG

• Use MLC-based umbrella coding (MLC-UC):

- Ex-3: Code-1 uses RS(528, 514, t=7), OC=9%
 - Inner daughter code: RS(144, 120, t=12),
 - Inner mother code: RS(288, 240, t=24).
 - CG > 8.5dB
 - Power: < 3.5X KR4-FEC

SUMMARY

- We have presented distributed MLC (dis-MLC) schemes to support multiple PMDs, which is an additional option to existing 3 FEC strategies.
- Detailed parameters such as FEC component codes, overclocking ratio, number of FEC modes, et al, will be decided after the required coding gains for FEC in various cases are determined.