200GbE alignment marker characteristics

Pete Anslow, Ciena
IEEE P802.3bs Task Force, Logic Ad Hoc, October 2016

Introduction

A proposed set of alignment markers for 200GbE was analysed in anslow 3bs 030516 and included in the P802.3bs draft.

Comment \#98 against D2.0 changed the AMs for lanes 1 to 7 to be the same as lanes 1 to 7 of 400 GbE (leaving only lane 0 as before).

Also, an error in the spreadsheet that calculated the hex values for inclusion in Table 119-1 had an error that resulted in $\mathrm{UP}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}$, UM_{5} not being the inverse of $\mathrm{UP}_{1}, \mathrm{UM}_{0}, \mathrm{UM}_{1}, \mathrm{UM}_{2}$ as they are for the 400GbE markers.

Figure 119-4—Alignment marker format
This contribution proposes to correct the AM for lane 0 and analyses the performance of the resulting set of alignment markers for $200 \mathrm{~Gb} / \mathrm{s}$ Ethernet.

AM for lane 0

The alignment marker for lane 0 in D2.1 is:

PCS lane number	$\left\{\mathrm{CM}_{0}, \mathrm{CM}_{1}, \mathrm{CM}_{2}, \mathrm{UP}_{0}, \mathrm{CM}_{3}, \mathrm{CM}_{4}, \mathrm{CM}_{5}, \mathrm{UP}_{1}, \mathrm{UM}_{0}, \mathrm{UM}_{1}, \mathrm{UM}_{2}, \mathrm{UP}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}\right\}$
0	$0 \times 9 \mathrm{~A}, 0 \times 4 \mathrm{~A}, 0 \times 26,0 \times 05,0 \times 65,0 \times \mathrm{BB} 5,0 \times \mathrm{D} 9,0 \times \mathrm{DD} 6,0 \times \mathrm{BB} 3,0 \times \mathrm{CC} 0,0 \times 8 \mathrm{C}, 0 \times 4 \mathrm{~B}, 0 \times 50,0 \times 79,0 \times 73$

When $\mathrm{UP}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}$ are changed to be the inverse of $\mathrm{UP}_{1}, \mathrm{UM}_{0}$, $\mathrm{UM}_{1}, \mathrm{UM}_{2}$ this becomes:

PCS lane number	$\left\{\mathrm{CM}_{0}, \mathrm{CM}_{1}, \mathrm{CM}_{2}, \mathrm{UP}_{0}, \mathrm{CM}_{3}, \mathrm{CM}_{4}, \mathrm{CM}_{5}, \mathrm{UP}_{1}, \mathrm{UM}_{0}, \mathrm{UM}_{1}, \mathrm{UM}_{2}, \mathrm{UP}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}\right\}$

Baseline wander

Previous NRZ contributions have used a "baseline wander" parameter
This was defined as:
Baseline wander is the instantaneous offset (in \%) in the signal generated by AC coupling at the Baud rate / 10,000.

This analysis re-uses this definition unmodified, but it should be noted that for PAM4, the eye height is $1 / 3$ that of NRZ so the effects of a given amount of baseline wander will be greater.

Clock content

The "clock content" parameter is defined here as:
Create a function which is a 1 for a transition and a 0 for no transition and then filter the resulting sequence with a corner frequency of Baud/13281.

This analysis defines a transition as one of three possibilities (as per healey 3bs 01 1115):

- Symmetrical transitions through the signal average
- Transitions through the signal average
- All transitions

Filter with corner
frequency
Baud/13281

Clock content illustration

Symmetrical transitions through the signal average

Transitions through the signal average

All transitions

200 Gb/s Ethernet alignment marker proposal

Table 119-1-200GBASE-R alignment marker encodings

PCS lane number	$\begin{gathered} \text { Encoding } \\ \left\{\mathrm{CM}_{0}, \mathrm{CM}_{1}, \mathrm{CM}_{2}, \mathrm{UP}_{0}, \mathrm{CM}_{3}, \mathrm{CM}_{4}, \mathrm{CM}_{5}, \mathrm{UP}_{1}, \mathrm{UM}_{0}, \mathrm{UM}_{1}, \mathrm{UM}_{2}, \mathrm{UP}_{2}, \mathrm{UM}_{3}, \mathrm{UM}_{4}, \mathrm{UM}_{5}\right\} \end{gathered}$
0	0x9A, $0 \times 4 \mathrm{~A}, 0 \times 26,0 \times 05,0 \times 65,0 \times B 5,0 \times D 9,0 \times D 6,0 \times B 3,0 \times C 0,0 \times 8 \mathrm{C}, 0 \times 29,0 \times 4 \mathrm{C}, 0 \times 3 \mathrm{~F}, 0 \times 73$
1	$0 \times 9 \mathrm{~A}, 0 \times 4 \mathrm{~A}, 0 \times 26,0 \times 04,0 \times 65,0 \times B 5,0 \times D 9,0 \times 67,0 \times 5 \mathrm{~A}, 0 \times \mathrm{DE}, 0 \times 7 \mathrm{E}, 0 \times \mathrm{x} 98,0 \times \mathrm{A} 5,0 \times 21,0 \times 81$
2	0x9A, $0 \times 4 \mathrm{~A}, 0 \times 26,0 \times 46,0 \times 65,0 \times B 5,0 \times D 9,0 \times F E, 0 \times 3 E, 0 \times F 3,0 \times 56,0 \times 01,0 \times C 1,0 \times 0 C, 0 \times A 9$
3	
4	
5	0x9A, $0 \times 4 \mathrm{~A}, 0 \mathrm{x} 26,0 \mathrm{xF} 2,0 \mathrm{x} 65,0 \mathrm{xB} 5,0 \mathrm{xD} 9,0 \mathrm{x} 4 \mathrm{E}, 0 \mathrm{x} 12,0 \mathrm{x} 4 \mathrm{~F}, 0 \mathrm{xD} 1,0 \mathrm{xB} 1,0 \mathrm{xED}, 0 \mathrm{xB} 0,0 \mathrm{x} 2 \mathrm{E}$
6	
7	0x9A, $0 \times 4 \mathrm{~A}, 0 \times 26,0 \times 22,0 \times 65,0 \times B 5,0 \times D 9,0 \times 32,0 \times D 6,0 \times 76,0 \times 5 B, 0 \times C D, 0 \times 29,0 \times 89,0 \times \mathrm{A} 4$

[^0]
Simulations

Using these alignment codes, all possible combinations of PCS lanes for 4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes were then analysed to find the worst cases for Baseline Wander (BW) and Clock Content (CC) after Gray coding to PAM4 symbols. These searches included lane delays of -40 to +40 .

The worst case PCS lane combinations and delays were then used to generate the worst case PDFs for 200 GbE scrambled idle $100 \mathrm{~Gb} / \mathrm{s}$ lanes.

Scrambled idle construction

The scrambled idle symbol streams generated for this analysis were:

- Idle control characters
- 256B/257B transcoded
- Scrambled
- Distributed 10 bits at a time to two FEC codewords which start with alignment markers followed by 68 bits of PRBS9 one in every 4096 code words
- 300 bits of $\operatorname{RS}(544,514)$ FEC parity added
- Interleaved 10 bits at a time to form PCS lanes (option 8a)
- Bit interleaved with worst case PCS lane combinations and delays

The results for baseline wander and clock content are in the following slides.

Baseline wander, 100G lanes, 400G markers

Baseline wander, 100G lanes, 200G markers

Clock, sym trans through ave, 100G lanes, 400G

Clock, sym trans through ave, 100G lanes, 200G

Clock, trans through ave, 100G lanes, 400G

Clock, trans through ave, 100G lanes, 200G

Clock, all transitions, 100G lanes, 400G

Clock, all transitions, 100G lanes, 200G

Conclusion

The baseline wander and clock content for the revised 200G alignment markers don't show any worse "shoulders" than the corresponding 400G plots do.

It is therefore proposed to use the modified AM for lane 0 and keep the remaining alignment markers for $200 \mathrm{~Gb} / \mathrm{s}$ Ethernet as per D2.1.

Backup

Worst case lane combinations 200GbE markers

4:1 bit interleaving for $100 \mathrm{~Gb} / \mathrm{s}$ lanes

	First lane	Second lane	Third lane	Fourth lane	First lane delay	Second lane delay	Third lane delay	Fourth lane delay
wander_max	1	2	3	0	0	0	35	35
wander_min	2	0	1	6	0	32	-23	
clock25_max	1	4	6	3	0	0	1	0
clock25_min	0	6	2	1	0	1	0	-1
clock50_max	1	0	6	2	0	-2	1	12
clock50_min	0	1	3	2	0	-6	-1	-5
clock75_max	0	6	7	1	0	1	1	-1
clock75_min	0	1	3	6	0	0	-1	-1

Thanks!

[^0]: ${ }^{\text {a }}$ Each octet is transmitted LSB to MSB.

