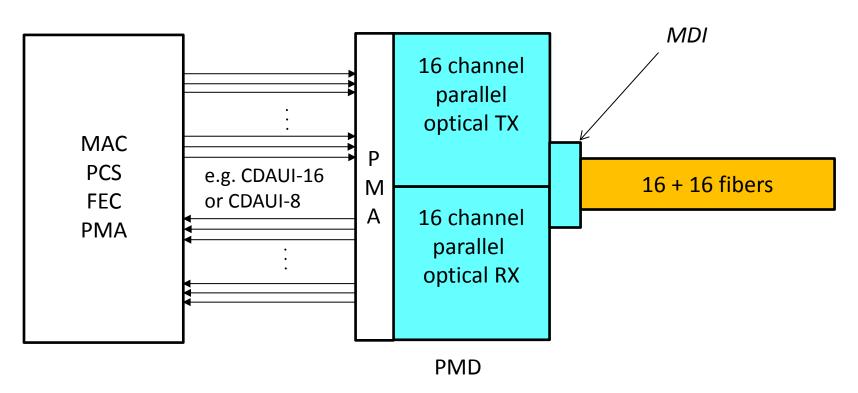
400 Gb/s 100 m MMF reach objective draft baseline proposal

17th October 2014 MMF ad hoc

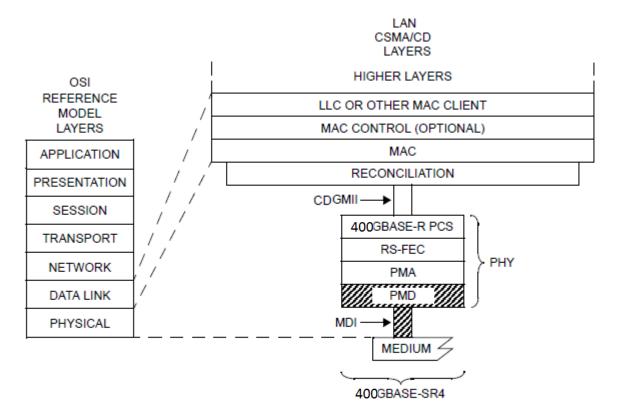
Outline

- Baseline proposal of a retimed PMD to address the 802.3bs objective to 'Provide physical layer specifications which support link distances of at least 100 m over MMF'
 - 16 lane parallel, short wavelength based PMD for 400GBASE-SR16.
 - Leveraging 100GBASE-SR4 technology, compatible with 16 x 25 Gb/s electrical interface, and breakout applications.
 - Assumed use of 100GBASE-SR4 FEC, or similar strength FEC (to be defined in 802.3bs), to enable 100 m reach.
 - Architecture, parameters and specifications for optical interfaces follow.

Supporters and contributors


- Ali Ghiasi, Ghiasi Quantum LLC
- Mark Gustlin, Xilinx
- Jonathan King, Finisar
- John Petrilla, Avago technologies
- Rick Pimpinella, Panduit
- Rick Rabinovich, Alcatel-Lucent

Motivation


- 16 parallel links operating at 25.78125 GBd utilize low cost, high performing multimode fiber compatible optics and electronics
 - Leverages 100GBASE-SR4 technology
 - FEC supported retimed interface enables a lowest power, lowest cost,
 100m solution today
 - Uses existing, viable semiconductor technologies and uncooled VCSELs
- The 16 optical lanes can directly map the 16 electrical lanes of CDAUI-16, without requiring multiplexing, translation, or deskewing inside the module.
- Compatible with 'break out' application
- This proposal is supported by multiple vendors and users, and is economically feasible and competitive compared to other alternatives.

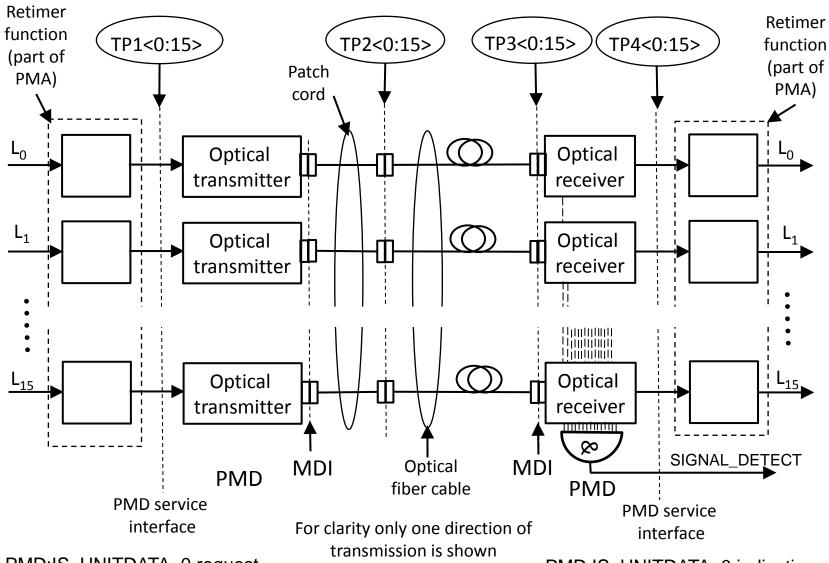
Proposal

- 16 parallel lanes @ 25.78125 GBd for 100GBASE-SR16 over 100 m OM4 fiber.
 - Exact signaling rate is determined by project's choice of FEC
- 850 nm sources, re-use of 100GBASE-SR4 specifications.
 - Assumes PMD target BER (prior to error correction) of 5x10⁻⁵ as per 100GBASE-SR4.

Position in 802.3 architecture

CDGMII = 400 Gb/s MEDIA INDEPENDENT INTERFACE PHY = PHYSICAL LAYER DEVICE LLC = LOGICAL LINK CONTROL MAC = MEDIA ACCESS CONTROL

MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER


PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT

RS-FEC = REED-SOLOMON FORWARD ERROR CORRECTION

SR = PMD FOR MULTIMODE FIBER

Editor's note: The RS-FEC layer may be merged into 400GBASE-R PCS layer, depending on the choice of architecture by the Task Force.

Block diagram for 400GBASE-SR16 transmit/receive path

PMD:IS_UNITDATA_0.request to PMD:IS_UNITDATA_15.request

PMD:IS_UNITDATA_0.indication to PMD:IS_UNITDATA_15.indication

Optical specifications

- Transmitter characteristics (each lane) at TP2 follow 100GBASE-SR4, Clause 95, Table 95-6.
- Receiver characteristics (each lane) at TP3 follow 100GBASE-SR4, Clause 95, Table 95-7.
- Illustrative link power budget follows 100GBASE-SR4, Clause 95, Table 95-8.

Current status of these tables shown on next 3 slides

Transmitter characteristics (each lane) at TP2: follow 100GBASE-SR4, Clause 95, Table 95-6

Description	Value	Unit
Signaling rate, each lane (range)	25.78125 ± 100 ppm	GBd
Center wavelength (range)	840 to 860	nm
RMS spectral width ^a (max)	0.6	nm
Average launch power, each lane (max)	2.4	dBm
Average launch power, each lane (min)	_9	dBm
Optical Modulation Amplitude (OMA), each lane (max)	3	dBm
Optical Modulation Amplitude (OMA), each lane (min) ^b	-7	dBm
Launch power in OMA minus TDEC (min)	-7.9	dBm
Transmitter and dispersion eye closure (TDEC), each lane (max)	4.9	dB
Average launch power of OFF transmitter, each lane (max)	-30	dBm
Extinction ratio (min)	2	dB
Optical return loss tolerance (max)	12	dB
Encircled flux ^c	≥ 86% at 19 µm ≤ 30% at 4.5 µm	
Transmitter eye mask definition $\{X1, X2, X3, Y1, Y2, Y3\}$ Hit ratio 1.5×10^{-3} hits per sample	{0.3, 0.38, 0.45, 0.35, 0.41, 0.5}	

aRMS spectral width is the standard deviation of the spectrum.

^bEven if the TDEC < 0.9 dB, the OMA (min) must exceed this value.

[°]If measured into type A1a.2 or type A1a.3 50 µm fiber in accordance with IEC 61280-1-4.

Receiver characteristics (each lane) at TP3: follow 100GBASE-SR4, Clause 95, Table 95-7

Description	Value	Unit		
Signaling rate, each lane (range)	25.78125 ± 100 ppm	GBd		
Center wavelength (range)	840 to 860	nm		
Damage threshold ^a (min)	3.4	dBm		
Average receive power, each lane (max)	2.4	dBm		
Average receive power, each lane ^b (min)	-10.9	dBm		
Receive power, each lane (OMA) (max)	3	dBm		
Receiver reflectance (max)	-12	dB		
Stressed receiver sensitivity (OMA), each lane ^c (max)	-5.6	dBm		
Conditions of stressed receiver sensitivity test:d				
Stressed eye closure (SEC), lane under test	4.9	ďΒ		
Stressed eye J2 Jitter, lane under test	0.39	UI		
Stressed eye J4 Jitter, lane under test	0.53	UI		
OMA of each aggressor lane	3	dBm		
Stressed receiver eye mask definition $\{X1, X2, X3, Y1, Y2, Y3\}$ Hit ratio 5×10^{-5} hits per sample	{0.28, 0.5, 0.5, 0.33, 0.33, 0.4}			

^aThe receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.

^bAverage receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

^eMeasured with conformance test signal at TP3 (see 95.8.8) for the BER specified in 95.1.1.

^dThese test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Illustrative link power budget: follow 100GBASE-SR4, Clause 95, Table 8

Parameter	ОМ3	OM4	Unit
Effective modal bandwidth at 850 nm ^a	2000	4700	MHz.km
Power budget (for max TDEC)	8.2		dB
Operating distance	0.5 to 70	0.5 to 100	m
Channel insertion loss ^b	1.8	1.9	dB
Allocation for penalties ^c (for max TDEC)	6.3		dB
Additional insertion loss allowed	0.1	0	dB

aper IEC 60793-2-10.

^bThe channel insertion loss is calculated using the maximum distance specified in Table 95–5 and cabled optical fiber attenuation of 3.5 dB/km at 850 nm plus an allocation for connection and splice loss given in 95.11.2.1.

^eLink penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Further work

- The PMD target BER is likely to deviate from 5x10⁻⁵, so some fine tuning of parameters may be required.
 - The project's choice of FEC will determine the pre-FEC BER target, and may also affect the exact signaling rate.
- Define the MDI
- Confirm skew budget