PAM-N modulation penalty in pictures

Jonathan King

November 2015

Acknowledgements

Many thanks to Pete Anslow, Mike Dudek and Roberto Rhodes for very helpful discussion and guidance

PAM-2 in pictures

$N=2$ modulation levels

N-1 = 1 eye

$\mathrm{N}-1=1$ threshold

Gaussian noise tails causing errors $\%$
2. $(\mathrm{N}-1)=2$ noise tails causing errors

- Probability of occurrence of each level $=1 / \mathrm{N}=1 / 2$
- Relative probability of error per symbol $=2 .(\mathrm{N}-1) / \mathrm{N}=1$
- The error probability associated with a single noise tail on a particular signal level $=P_{i} .1 / 2 . \operatorname{erfc}\left((\mathrm{OMA} / 2) /\left(\sigma_{\mathrm{n}} . \mathrm{V} 2\right)\right.$
where P_{i} is the probability of occurrence of the $i^{\text {th }}$ signal level
and σ_{n} is the RMS of the Gaussian noise
- Note: the symbol error ratio equals the bit error ratio for PAM-2

PAM-4 in pictures

At time centre of eye
$N=4$ modulation levels

$\mathrm{N}-1=3$ eyes

Modulation levels
Thresholds

N-1 $=3$ thresholds

2. $(\mathrm{N}-1)=6$ noise tails causing errors

- Probability of occurrence of each level $=1 / \mathrm{N}=1 / 4$
- Relative probability of errors per symbol $=2 .(N-1) / N=3 / 2$
- The symbol error ratio increases!
- For Gray coded PAM-4, 1 symbol error produces 1 bit error; but each symbol translates to $\log _{2}(N)=2$ bits, so the ratio of SER (symbol error ratio) to BER is: SER/BER $=\log _{2}(N)=2$
- Relative probability of errors per bit $=2 .(\mathrm{N}-1) /\left(\mathrm{N} \cdot \log _{2}(\mathrm{~N})\right)=3 / 4$
- The bit error ratio decreases !

BER to power penalty

For a target BER of 2.4×10^{-4} :

- For ideal NRZ, the Q required is 3.492
- For ideal PAM-4, the Q required is 3.414
- a negative Q penalty of $\sim 0.098 \mathrm{~dB}$
- total modulation penalty for PAM-4 is 4.678 dB (including impact of OMA scaling, higher symbol error rate, lower bit error rate, for a given outer eye OMA and fixed receiver noise, at BER of 2.4×10^{-4})

Back up

PAM-3 cartoon

- Probability of occurrence of each level $=1 / \mathrm{N}=1 / 3$
- Relative probability of error per symbol $=2 .(\mathrm{N}-1) / \mathrm{N}=4 / 3$
- Relative probability of errors per bit $=2 .(\mathrm{N}-1) /\left(\mathrm{N} \cdot \log _{2}(\mathrm{~N})\right)=0.841$

General PAM-N modulation penalty in words

Ideal Transmitter

- Negligible noise, negligible ISI, equally spaced modulation levels Ideal Receiver
- Gaussian noise, perfect timing and slicing; Negligible added ISI/jitter
- Errors due to a noise tail crossing more than one threshold are ignored PAM-N
- N levels with equal probability of occurrence; $\mathrm{N}-1$ eyes; $\mathrm{N}-1$ thresholds; $\log _{2} \mathrm{~N}$ bits/symbol
- 2.(N-1) noise tails causing symbol errors.
- 2. $(\mathrm{N}-1) / \mathrm{N}$ times the number of symbol errors generated for PAM-N (compared to PAM-2) for same inner-eye OMA to noise ratio
- 2. $(\mathrm{N}-1) /\left(\mathrm{N} . \log _{2} \mathrm{~N}\right)$ times the number of bit errors generated for PAM-N (compared to PAM-2) for same inner-eye OMA to noise ratio
- For PAM-N, this allows a decrease in Q (cf. NRZ) to meet a given target BER
- a negative power penalty, which increases in magnitude as target BER increases (slope of BER curve); ~ $\mathbf{0 . 0 9 8} \mathbf{d B}$ for PAM4 at a BER of 2.4×10^{-4}.
- reduces the PAM-4 modulation penalty to 4.678 dB (compared to the OMA scaling penalty of 4.771 dB).

Simulation showing BER vs OMA for ideal Tx

