Estimating MPI Penalty

Vipul Bhatt
Benjamin Smith
Inphi Corporation

January 6, 2016

Estimating MPI Penalty

Introduction
Upper Bound
Model
Accounting for PMD Reflectances Separately Upper Bound Values

Discount Factor
Precedents

Estimation

Attenuation Discount
Choosing the Value of Discount Factor D
Results
Conclusion

Introduction

- Optical link power penalty associated with MPI (Multi-Path Interference) is difficult to measure experimentally. The worst-case outcome, an outage, has a very low probability of occurring. However, when it occurs, it can severely impair link performance for a relatively long period of time.
- Comprehensive, closed-form analytical solution is also difficult.
- Given our schedule constraints, we may have to rely on a combination of approximation and simulation to estimate a "sufficiently" conservative value of MPI penalty.
- This presentation focuses on approximation - starts with an upper bound and then dials it down judiciously.

Plan of This Presentation

1. Describe deterministic upper bound.
2. Introduce a discount factor.
3. Estimate and recommend a value of discount factor.
4. Review some results.

Upper Bound: Model

$\stackrel{\longleftrightarrow}{\leftrightarrows \tau_{1}+\tau_{2} \rightarrow} 3 \tau_{1}+\tau_{2} \longrightarrow \tau_{1}+3 \tau_{2} \longrightarrow 3 \tau_{1}+3 \tau_{2} \rightarrow$

The received signal $u(t)$ is the sum of these delayed replicas of transmitted signals.

Received power is $|u(t)|^{2}$.

Model

- For PAM-m, amplitudes $A_{i}, i=1$.. m, are transmitted.
- Received signal field $u(t)=B_{0} e^{j \omega t}+\sum_{k=1}^{N} \sqrt{R^{2}} B_{k} e^{j\left(\omega t+\tilde{\theta_{k}}\right)}$, where
- B_{0} is the victim amplitude; B_{k} are the interfering amplitudes
- $\tilde{\theta}_{k}$ is a random variable in $[0,2 \pi)$. It accounts for various path lengths of interference etalons, as well as spectral width / phase noise. For a more granular treatment of $\tilde{\theta}$ that separately accounts for phase noise and path length, see reference [1].
- N is the number of interfering terms. $N=p(p-1) / 2$, where p is the number of reflectance points in a link: n number of connectors +2 PMD reflectance points.
- PMD reflectance is assumed equal to connector reflectance R.
- We make two worst-case assumptions:
- $B_{j}=A_{m}$ for all $j \in[0, N]$. Victim is at highest PAM amplitude, and all interfering terms are of highest PAM amplitude.
- $\tilde{\theta_{k}}=\tilde{\theta}$, i.e., it is common to all interferers

Model

- Therefore, $u(t)=A_{m} e^{j \omega t}\left(1+N R e^{j \tilde{\theta}}\right)$ where $N R e^{j \tilde{\theta}}$ is the interference term.
- $I(t)=|u(t)|^{2} \approx A_{m}{ }^{2}(1+2 N R \cos \tilde{\theta})$ where $2 N R \cos \tilde{\theta}$ is the noise intensity term.
- Since $\cos \tilde{\theta}$ is bounded within $[-1,1]$, peak-to-peak noise intensity $\leq 4 N R A_{m}{ }^{2}$.
- MPI Penalty, $\mathrm{dB}=10 \log _{10}\left(\frac{O M A_{\text {inner }}}{O M A_{\text {inner }}-4 N R A_{m}{ }^{2}}\right)$
- Substitute $O M A_{\text {inner }}=\frac{A_{m}^{2}-A_{1}^{2}}{m-1}$, extinction ratio $E=\frac{A_{m}^{2}}{A_{1}^{2}}$
- MPI Penalty, $\mathrm{dB}=10 \log _{10}\left(\frac{1}{1-x}\right), x=(m-1) 4 N R\left(\frac{E}{E-1}\right)$
- This is an upper bound. The reward of this conservative choice is elimination of outage risk.

Accounting for PMD Reflectances Separately

- It is helpful to separate out reflectance values of transmitter, receiver, and connectors, because it enables us to explore various scenarios.
- For n connectors between Tx and Rx , We can count various reflections separately and add them up [4].
- One reflection between Tx and Rx
- n reflections between $T x$ and n connectors
- n reflections between Rx and n connectors
- $n(n-1) / 2$ reflections among n connectors
- MPI Penalty, $\mathrm{dB}=10 \log _{10}\left(\frac{1}{1-x}\right), x=(m-1) 4 S\left(\frac{E}{E-1}\right)$, where $S=\sqrt{R_{t} R_{r}}+n \sqrt{R_{t} R_{c}}+n \sqrt{R_{r} R_{c}}+\frac{n(n-1)}{2} R_{c}$ R_{c}, R_{t}, R_{r} are discrete reflectances of connectors, transmitter and receiver, respectively. Table 1 lists a few examples.

MPI Penalty, Upper Bound

Table 1: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors. PAM4, Ext. Ratio 6 dB . All values in dB. No discount factor applied $(D=1)$.

Cases	Tx	Rx	Conn	Pmpi(2)	Pmpi(4)	Pmpi(6)
DR4 D1.0	20	26	35	0.81	1.44	2.31
Case A	26	26	26	1.20	4.01	-
Case B	20	20	26	3.20	-	-
Case C	26	26	35	0.47	0.89	1.47
Case D	35	35	35	0.13	0.34	0.66
Case E	26	26	55	0.20	0.23	0.26
Case F	26	26	45	0.26	0.36	0.47
Case G	20	26	55	0.40	0.45	0.49
Case H	20	26	45	0.49	0.64	0.80

Discount Factor

- We now introduce an arbitrary discount factor D, to compensate for the highly conservative nature of this upper bound - but without raising the outage risk.
- MPI Penalty, $\mathrm{dB}=10 \log _{10}\left(\frac{1}{1-x}\right), x=D(m-1) 4 S\left(\frac{E}{E-1}\right)$ where $0<D \leq 1$
- How should we determine the appropriate value of D ?
- Precedents: Look in past IEEE link models
- Estimation: Derive a simple approximation
- Simulation: Perform Monte Carlo analysis
- Measurement: Preferred but hard to get it right
- A combination of the above, using good judgment. This presentation includes the first two.

Discount Factor: Precedents

- In the past, IEEE link models have used a similar discount factor called Reflection Noise factor [3].
- From Notes: "Reflection noise factor of 0.6 introduced to avoid undue pessimism. The value needs further consideration."

Table 2: Reflection Noise Factors Used in past IEEE Link Models*

File	Tab	Cell	Value
10GEPBud3_1_16a.xls	LX4_SMF	L10	0.6
	1310S	L10	0.6
	1550S40km	L10	0.6
EFMO_0_2.7.xls	1000LX10SMF	L11	0.2
	1000BX10.1490	L11	0.6
	1000PX10.1310	L11	0.2

*Binary NRZ, 2 PMD reflectances only (no connectors)

Estimation of Discount Factor

- Let's consider two discounts, using simple approximations.
- Amplitude Discount
- At 25 GBaud, a PAM symbol occupies only 8 meters of fiber. If we assume that interfering terms are from fairly independent symbols, where each symbol has PAM amplitude from $\{0,1,2,3\}$, we can scale down the magnitude of interference.
- Risk Scenario: A long burst of PAM 3 symbols.
- Attenuation Discount
- We can view a link as made of multiple segments, where each segment represents a combination of connector insertion loss and fiber attenuation. Interfering terms get more attenuated than signal, as they get bounced around the link.
- Risk Scenario: A short link with low connector insertion losses.

Amplitude Discount

- Amplitude Discount Factor

$$
D_{1}=\frac{1}{4}\left(\frac{1}{\sqrt{E}}+\sqrt{\frac{E+2}{3 E}}+\sqrt{\frac{2 E+1}{3 E}}+1\right)
$$

- See Appendix B for derivation of D_{1}
- MPI Penalty, $\mathrm{dB}=10 \log _{10}\left(\frac{1}{1-x}\right), x=D_{1}(m-1) 4 S\left(\frac{E}{E-1}\right)$

Table 3: Amplitude Discount Factor D_{1} for PAM4

$\mathrm{E}(\mathrm{dB})$	D_{1}
4	0.82
6	0.77
8	0.73
100	0.60

Attenuation Discount

- Attenuation Discount Factor $D_{2}=\frac{\hat{S}}{S}$
- See Appendix C for derivation of D_{2}
- MPI Penalty, $\mathrm{dB}=10 \log _{10}\left(\frac{1}{1-x}\right), x=D_{2}(m-1) 4 S\left(\frac{E}{E-1}\right)$

Table 4: Attenuation Discount Factor D_{2} for various scenarios. Assumptions: Connector reflectance 35 dB , Tx reflectance $26 \mathrm{~dB}, \mathrm{Rx}$ reflectance 26 dB .

Scenario	SegAttn (dB)	α	n	D_{2}
DR4	0.30	0.933	2	0.93
	0.65	0.861	4	0.77
FR8	0.25	0.944	4	0.90
	0.57	0.877	6	0.73
LR8	0.50	0.891	4	0.81
	0.88	0.817	6	0.63

Choosing the Value of Discount Factor

- Since D_{1} and D_{2} are results of unrelated effects, we can take D as a product of D_{1} and $D_{2}: D=D_{1} D_{2}$
- From Tables 3 and 4 , a range of $0.50 \leq D \leq 0.70$ seems like a good starting point of discussion.
- Different considerations for different link types
- DR4: Lower D_{1} (external modulation), but higher D_{2} (lower attenuation, fewer connectors). $0.60 \leq D \leq 0.72$
- FR8: Higher D_{1} (leave room for direct modulation), moderate D_{2} (mid-range attenuation and connector count). $0.60 \leq D \leq 0.74$
- LR8: Lower D_{1} (external modulation) as well as lower D_{2} (higher attenuation, more connectors). $0.49 \leq D \leq 0.62$
- In the following pages, results for $D=0.5, D=0.6$ and $D=0.7$ are presented.

Results for $D=0.5$

Table 5: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors, modified by Discount Factor $D=0.5$. PAM4, Ext. Ratio 6 dB . All values in dB .

Cases	$T \times$	$R x$	Conn	Pmpi(2)	Pmpi(4)	Pmpi(6)
DR4 D1.0	20	26	35	0.39	0.66	1.00
Case A	26	26	26	0.56	1.56	3.59
Case B	20	20	26	1.31	3.20	8.62
Case C	26	26	35	0.23	0.42	0.67
Case D	35	35	35	0.07	0.17	0.32
Case E	26	26	55	0.10	0.11	0.13
Case F	26	26	45	0.13	0.18	0.23
Case G	20	26	55	0.20	0.22	0.24
Case H	20	26	45	0.24	0.31	0.38

Results for $D=0.6$

Table 6: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors, modified by Discount Factor $D=0.6$. PAM4, Ext. Ratio 6 dB . All values in dB .

Cases	Tx	Rx	Conn	Pmpi(2)	Pmpi(4)	Pmpi(6)
DR4 D1.0	20	26	35	0.47	0.80	1.23
Case A	26	26	26	0.68	1.95	4.88
Case B	20	20	26	1.63	4.27	-
Case C	26	26	35	0.28	0.51	0.82
Case D	35	35	35	0.08	0.20	0.39
Case E	26	26	55	0.12	0.14	0.15
Case F	26	26	45	0.16	0.21	0.27
Case G	20	26	55	0.24	0.26	0.29
Case H	20	26	45	0.29	0.37	0.46

Results for $D=0.7$

Table 7: MPI Penalty, Upper Bound, for 2, 4 and 6 connectors, modified by Discount Factor $D=0.7$. PAM4, Ext. Ratio 6 dB . All values in dB .

Cases	Tx	Rx	Conn	Pmpi(2)	Pmpi(4)	Pmpi(6)
DR4 D1.0	20	26	35	0.55	0.95	1.48
Case A	26	26	26	0.80	2.38	6.73
Case B	20	20	26	1.97	5.68	-
Case C	26	26	35	0.32	0.60	0.97
Case D	35	35	35	0.09	0.24	0.45
Case E	26	26	55	0.14	0.16	0.18
Case F	26	26	45	0.18	0.25	0.32
Case G	20	26	55	0.28	0.31	0.34
Case H	20	26	45	0.34	0.44	0.55

Are We Still Being Sufficiently Conservative?

- There's no easy answer. We have to make a subjective judgment call. Here are some points to consider.
- Protection from outage: We are still covered. Here are the pessimistic assumptions we are continuing to make:
- Laser is ideally monochromatic and coherent, and every single interfering term is temporally aligned and antipodal to the victim signal. All interference has aligned polarization.
- Direction of $D_{2}: D_{2}$ moves in a helpful direction. It is low when link budget is tight.
- Protection from a long string of PAM 3 symbols: Amplitude Discount D_{1} is based on transmitted pulse set at the highest PAM level, but not the interfering terms. We are a bit exposed here.
- One option: Take higher end of D_{1} but lower end of D_{2}.

Conclusion

- MPI penalty upper bound guarantees that there will be no outage.
- The price of upper bound is higher values of MPI penalty in link budget.
- Discount factor values in the range of 0.5 to 0.7 appear to be worth considering.
- Measurements and simulations can help us further refine the value.

References

1. "Effects of Phase-to-Intensity Noise Conversion by Multiple Reflections on Gigabit per Second DFB Laser Transmission Systems", by Gimlett \& Cheung, JOLT Vol. 7, No. 6, June 1989.
2. "Measurements and Simulations of Multipath Interference for $1.7 \mathrm{Gbit} / \mathrm{s}$ Lightwave System Utilizing Single and Multi-frequency Lasers", by D. Duff, et al., Proc. OFC, 1989.
3. "The 10G Ethernet Link Model", by Piers Dawe. http://www.ieee802.org/3/efm/public/sep01/dawe_1_0901.pdf
4. "Improved MPI Upper Bound Analysis", by Farhood et al. http://www.ieee802.org/3/bm/public/nov12/farhood_01_1112_optx.pdf

Appendix A: Summary of Equations

$$
\begin{gather*}
\text { MPI Penalty, } \mathrm{dB}=10 \log _{10}\left(\frac{1}{1-x}\right) \tag{1}\\
x=D(m-1) 4 S\left(\frac{E}{E-1}\right) \tag{2}\\
S=\sqrt{R_{t} R_{r}}+n \sqrt{R_{t} R_{c}}+n \sqrt{R_{r} R_{c}}+\frac{n(n-1)}{2} R_{c} \tag{3}\\
D=D_{1} D_{2} \tag{4}\\
D_{1}=\frac{1}{4}\left(\frac{1}{\sqrt{E}}+\sqrt{\frac{E+2}{3 E}}+\sqrt{\frac{2 E+1}{3 E}}+1\right) \tag{5}\\
D_{2}=\frac{\hat{S}}{S} \tag{6}\\
\hat{S}=\sqrt{R_{t} R_{r}} \cdot \sqrt{\alpha^{2 n}}+\frac{1-\alpha^{n}}{1-\alpha} \cdot\left(\sqrt{R_{t} R_{c}}+\sqrt{R_{c} R_{r}}\right)+R_{c} \cdot\left(\frac{n}{1-\alpha}+\frac{\alpha^{n}-1}{(1-\alpha)^{2}}\right) \tag{7}
\end{gather*}
$$

α : transmission coefficient of a link segment, E : extinction ratio, m : number of PAM levels, n : number of connectors, R_{c}, R_{t}, R_{r} : reflectance values of connectors, transmitter and receiver, respectively.

Appendix B: Derivation of D1

- For upper bound, we had assumed $B_{j}=A_{4}, \forall j$, for PAM4, in received field $u(t)=B_{0} e^{j \omega t}+\sum_{k=1}^{N} \sqrt{R^{2}} B_{k} e^{j(\omega t+\tilde{\theta})}$
- Let's change that to $B_{0}=A_{4}$, and $B_{k}, k \in[1, N]$, equally likely from $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, with probability $\frac{1}{4}$ each. Transmitted pulse is still of highest amplitude, but interfering pulses can have any of the 4 PAM4 amplitudes.

E: Extinction Ratio

Now, as in [4], we replace A_{4} with

$$
\begin{aligned}
& D_{1} A_{4}=\frac{1}{4}\left(A_{1}+A_{2}+A_{3}+A_{4}\right)=A_{4} \frac{1}{4}\left(\frac{1}{\sqrt{E}}+\sqrt{\frac{E+2}{3 E}}+\sqrt{\frac{2 E+1}{3 E}}+1\right) \\
& \therefore D_{1}=\frac{1}{4}\left(\frac{1}{\sqrt{E}}+\sqrt{\frac{E+2}{3 E}}+\sqrt{\frac{2 E+1}{3 E}}+1\right)
\end{aligned}
$$

Appendix C: Derivation of D2

- Signal travels forth, crossing n connectors
- An interfering term sloshes around - forth, back, and forth - traveling through additional segments, relative to the victim.
- Calculation of S can be replaced with \hat{S} to explicitly model the additional attenuation.

Derivation of D2

Total additional loss of a reflected path scales directly with the number of connectors between the interfaces at which the reflections occur. α is the transmission coefficient of each segment. It is the result of a combination of connector insertion loss and fiber attenuation. $D_{2}=\frac{\hat{s}}{S}$ where

$$
\begin{aligned}
\hat{S}= & \sqrt{R_{t} R_{r}} \cdot \sqrt{\alpha^{2 n}}+ \\
& \sqrt{R_{t} R_{c}} \cdot\left(1+\sqrt{\alpha^{2}}+\sqrt{\alpha^{4}}+\cdots+\sqrt{\alpha^{2(n-1)}}\right)+ \\
& \sqrt{R_{r} R_{c}} \cdot\left(1+\sqrt{\alpha^{2}}+\sqrt{\alpha^{4}}+\cdots+\sqrt{\alpha^{2(n-1)}}\right)+ \\
& \sqrt{R_{c} R_{c}} \cdot\left((n-1)+(n-2) \sqrt{\alpha^{2}}+\cdots+\sqrt{\alpha^{2(n-2)}}\right)
\end{aligned}
$$

which simplifies to
$\hat{S}=\sqrt{R_{t} R_{r}} \cdot \sqrt{\alpha^{2 n}}+\frac{1-\alpha^{n}}{1-\alpha} \cdot\left(\sqrt{R_{t} R_{c}}+\sqrt{R_{c} R_{r}}\right)+R_{c} \cdot\left(\frac{n}{1-\alpha}+\frac{\alpha^{n}-1}{(1-\alpha)^{2}}\right)$
Other, simpler approximations of D_{2} are possible.

