Fiber optic cabling models for 400G SMF PMDs

Gary Nicholl - Cisco IEEE P802.3bs Task Force, SMF Ad Hoc, 16 February 2016

Introduction

- Considerable progress has been made over the last few meetings around building consensus on MPI penalty for SMF PMDs.
- To complete this work and finalize the MPI penalty values in the specification, we need to get (confirm) agreement on the following:
 - Fiber optic cabling model for each PMD
 - Connector and MDI return loss specifications
 - MPI analysis methodology
- This presentation addresses the first of these:
 - "Fiber optic cabling model for each SMF PMD"

Why is a fiber cabling model needed ?

Figure 123-3—Fiber optic cabling model

- PAM4 is more sensitive to reflections (MPI) than NRZ.
- MPI is heavily dependent on both the number and return loss specifications of the connectors in the end-to-end link.
- Current fiber cabling reference models (above) are too simplistic to be used for PAM4 (primarily because they don't include the number and type of connectors in the link).
- Just as channel models became critical for copper links (e.g. backplane) as speeds increased, so they are now starting to become critical for optical links.

Goal of this presentation

- The goal for the remainder of this presentation is to come up with a consistent cabling reference model for each of the SMF PMDs (DR4, FR8 and LR8).
- The majority of the data in this presentation has been taken from:
 - http://www.ieee802.org/3/bs/public/14_05/kolesar_3bs_01_0514.pdf
- kolesar_3bs_01_0514 has been cited as a reference for fiber cabling models by many of the presentations on MPI analysis.
- It is also important to remember that a cabling model never dictates deployment (a point that Pete correctly keeps hammering home!)

Recap - kolesar_3bs_01_0514

Cabling Terminology

<u>Cords:</u> used to administer temporary connectivity from:

- 1. equipment (transceivers) to patch panel, called equipment cords
- 2. patch panel to patch panel, called patch cords

Links: permanent cabling between two patch panels

<u>Channels:</u> complete end-to-end connectivity between equipment, consisting of concatenations of (temporary) cords and (permanent) links

Recap - kolesar_3bs_01_0514

Common Channel Implementations (both 2-fiber and parallel transceivers)

Note: Connections to transceivers (at MDI) are not included in Connection Tally.

Recap - kolesar_3bs_01_0514 (Example)

Note: Picture courtesy of kolesar_3bs_01_0514; Graphical enhancements courtesy of J. D'Ambrosia.

Proposed usage of reference link models

Proposed to use for 2km and below

Proposed to use for 10 km and above

Proposed reference models for 802.3bs

400GBASE-DR4 (500m):

400GBASE-FR8 (2km):

400GBASE-LR8 (10km):

Recommendation

• That the fiber cabling models contained in slide 9 be adopted as the worst case reference models to be used in the calculation of the MPI penalty for DR4, FR8 and LR8 PMDs.

Open Questions

 Should these cabling models be incorporated into the 802.3bs draft spec to replace the current fiber optic cabling models (Figure 122-3 and Figure 123-3), or should they just be used to calculate the MPI penalty ? Perhaps we can leverage from the experience of previous backplane projects here ?

Next Steps

Work and finalize the MPI penalty values. Agreement on:

- Fiber optic cabling model for each PMD
 - This presentation
 - Comments (and supporting presentation) will be submitted against D1.2 based on this presentation and any received inputs
- Connector and MDI return loss specifications
 - Agreement on consistent approach needed
- MPI analysis methodology
 - Final agreement after above is completed