Pair-set Coherency

Dave Dwelley Linear Technology 802.3bt Atlanta Jan 2015

Purpose

- Ensure pair-sets act in coordination
 - To address SELV problems
 - To avoid multiplicity of pair-set states

SELV Problem

 As discussed in IEEE 4-Pair task force simultaneously powering a cable with an Endspan and Midspan PSE can lead to SELV problems

How to Avoid 4P SELV Problems

- Shorten or Remove T_{PON} for Type 3/4
- Modify PD state machine definition of present_det_sig
 - Dual PD signatures must corrupt pair-set B signature if pair-set A is V_{PD} > V_{Reset}
 - And vice versa
- Type 3/4 PSEs with dual detection capability shall not power an Rgood – !Rgood combination

Multiplicity of Pair-set States

- PSE and PD state machines present and react to the electrical state of the link
 - Pair-sets inherently have fully orthogonal electrical states
 - A single PSE (or PD) state machine cannot be in two states simultaneously
- Changing the 802.3 Layer Management one-toone relationships has repercussions for the larger 802.3 committee

State Machine or Machines?

- Two options exist:
 - One state machine shuts power off if either pair-set experiences a fault

Or

pair-set

• Two state machines, one per

POWER ON

D

short detected +

ovId_detected + option_vport_lim

IEEE 802.3 Layer Management

- 802.3-2012 has defined data structures and objects to describe and relate CSMA/CD subsystems
- As specified today, the data object (oPHY) is the parent of exactly:
 - 1 PSE object (oPSE)
 - 1 PD object (oPD)

Existing Data Structures are 1-to-1

Figure 30–3— DTE System entity relationship diagram

oPSE Data Structure Field Example

aPSEPowerDetectionStatus has 6 possible states

30.9.1.1.5 aPSEPowerDetectionStatus

ATTRIBUTE APPROPRIATE SYNTAX:

> An ENUMERATED VALUE that has one of the following entries: disabledPSE disabled searchingPSE searching deliveringPowerPSE delivering power testPSE test mode faultPSE fault detected otherFaultPSE implementation specific fault detected

OtherFault

Multiplicity– Two State Machines

If two state machines are used to track Alt A vs Alt B state the existing IEEE 802.3 Layer Management structure is violated

Fault Event – Two State Machines

- A fault on Alt A results in incoherent states
 - oPSE(A). aPSEPowerDetectionStatus = faultPSE
 - oPSE(B). aPSEPowerDetectionStatus = deliveringPowerPSE

Fault Event – One State Machine

- Fault on Alt A turns off power on Alt A & B
 - oPSE. aPSEPowerDetectionStatus = faultPSE
- One oPSE object and one PSE State Machine
 - Power Alt A & B on together
 - Fault Alt A & B off together

Conclusion

- Specify one and only one oPSE and oPD
- Specify one and only one PSE and PD state machine
- Turn pair-sets on together
- Fault pair-sets off together
 - OR'ed fault response
- Only apply power if both pair-sets report R_{GOOD}

