33.2.8.5 Continuous output current capability in the POWER_ON state

For Type 1 and Type 2 PSEs, IPort-2P is defined in 33.1.3, For Type 3 and Type 4 PSEs, IPort-2P and IPort-2P-other are the currents on the pairs with the same polarity of the two pairsets and are defined in Equation (33–5) and in Equation (33–6).

$I_{\text{Port-2P}} = \left\{ \begin{array}{l} I_{\text{Port-2P-pri}} \text{ for the Primary Alternative} \\ I_{\text{Port-2P-sec}} \text{ for the Secondary Alternative} \end{array} \right\}_{A}$	(33–5)
$I_{\text{Port-2P-other}} = \left\{ \begin{array}{l} I_{\text{Port-2P-sec}} \text{ for the Primary Alternative} \\ I_{\text{Port-2P-pri}} \text{ for the Secondary Alternative} \end{array} \right\}_{A}$	(33–6)

where

IPort-2P-priis the output current sourced by the Primary Alternative, defined in 33.2.5.9IPort-2P-secis the output current sourced by the Secondary Alternative, defined in 33.2.5.9

IPort is the total current on both pairs with the same polarity and is defined in Equation (33–7).

$$I_{Port} = \{I_{Port-2P} + I_{Port-2P-other}\}_{A}$$
(33-7)

PSEs shall be able to source ICon-2P, the current the PSE supports on each powered pairset, as specified in Equation (33–8).

	P _{Class} /V _{PSE}	when in 2-pair mode	
$I_{\text{Con-2P}} = \langle$	min(I _{Con} -I _{Port-2P-other} , I _{Con-2P-unb})	when 4-pair powering a single-signature PD	(33–8)
ł	P _{Class-2P} /V _{PSE}	when 4-pair powering a dual-signature PD	A

where

PClass	is PClass as defined in <u>Equation (33-2)</u>	 Deleted: Table 33–13
PClass-2P	is PClass-2P as defined in Equation (33-3),	Deleted: Table 33–13
VPSE	is the voltage at the PSE PI as defined in 33.1.3	
lCon	is the total current a PSE is able to source as defined in Equation (33–9)	
ICon-2P-unb	is the current a PSE is able to source on a pairset due to unbalance as defined in	
	Table 33–18	
IPort-2P-other	is the output current on the other pairset as defined in Equation (33–6).	

When powering a single-signature PD over 4 pairs, a Type 3 or Type 4 PSE supports:

• A total current of Icon, defined in Equation (33–9), over both pairs with the same polarity

• A minimum current of Icon-2P-unb over one of the pairs of the same polarity under maximum unbalance condition (see 33.2.8.5.1) in the POWER_ON state.

Deleted: ICon-2P is the current the PSE supports on each powered pairset and is defined by Equation (33–8). Icon is the total current of both pairs with the same polarity that a Type 3 and Type 4 PSE supports, when powering a single-signature PD in 4-pair mode. ICon is defined in Equation (33–9). ICon-2P-unb is the maximum current a Type 3 or Type 4 PSE supports over one of the pairs of same polarity under maximum unbalance condition (see 33.2.8.5.1) in the POWER_ON state, when powering a singlesignature PD in 4-pair mode.

Deleted: 2.5.4

$$\begin{aligned} & f_{\text{Cons}} = \left[\frac{P_{\text{Cons}}}{P_{\text{Pars}}^2}\right]_{A} \end{aligned} (33-0) \end{aligned}$$
The PSE shall support the AC current waveform parameter (resk-2r), defined in Equation (33-1Q, on each powered interval in

1

dimensionless

IPeak is the total peak	current a PSE supports per Equation (33– 11)		Deleted: 10
$\int \min(0.214 \times (R_{\text{chan-2P}})^{-0.363}, 0.331$) for Class 5		
$K_{\rm r}$ = $\lim_{n \to \infty} \min(0.199 \times (R_{\rm chan-2P})^{-0.350}, 0.304$) for Class 6		
$\min(0.180 \times (R_{\text{chan-2P}})^{-0.335}, 0.270)$) for Class 7	(33– <u>13)</u>	Deleted: 12
$\min(0.176 \times (R_{\text{chan-2P}})^{-0.347}, 0.260)$) for Class 8		Formatted: Font:10 pt
/here			
RChan-2P is the channel DC minimum value of Editing Instruction: Add new to Equation with values:	Classes 0-4	1.3. RChan-2P has a	Deleted: 12
RChan-2P is the channel DC minimum value of the channel of	Cloop resistance per pairset, as defined in 33. of 0.2 Ω when used in Equation (33– <u>13)</u> . op row <u>to Kipeak</u> Classes 0-4 web 28-uph JBook 28-uph max which is defin	1.3. RChan-2P has a	Deleted: 12
where RChan-2P is the channel DC minimum value of Editing Instruction: Add new to Equation with values: 1 Alternatively, an over-margined value of IPe may be used.	Cloop resistance per pairset, as defined in 33. of 0.2 Ω when used in Equation (33– <u>13</u>). Op row <u>to KIpeak</u> Classes 0-4 eak-2P-unb _* IPeak-2P-unb_max which is defin	1.3. RChan-2P has a ed by Equation (33– <u>14)</u> ,	Deleted: 12 Deleted: The Deleted: worst case
RChan-2P is the channel DC minimum value of Editing Instruction: Add new to Equation with values: 1 Alternatively, an over-margined value of IPe may be used.	Cloop resistance per pairset, as defined in 33. of 0.2 Ω when used in Equation (33– <u>13</u>). Op row <u>to KIpeak</u> Classes 0-4 eak-2P-unb _* IPeak-2P-unb_max which is defin	1.3. RChan-2P has a ed by Equation (33–14),	Deleted: 12 Deleted: The Deleted: worst case Deleted: is
where RChan-2P is the channel DC minimum value of <i>Editing Instruction: Add new to</i> <u>Equation with values:</u> 1 <u>Atternatively, an over-margined value of IPe</u> may be used. $I_{\text{Peak-2P_unb_max}} = \{I_{\text{LIM-2P}} - 0.002\}_{A}$	Cloop resistance per pairset, as defined in 33. of 0.2 Ω when used in Equation (33– <u>13</u>). Op row <u>to Klpeak</u> Classes 0-4 eak-2P-unb _* IPeak-2P-unb_max which is defin	1.3. RChan-2P has a ed by Equation (33–14), (33–14)	Deleted: 12 Deleted: The Deleted: worst case Deleted: is Deleted: 13