Comment R02-104 proposed changes:

Option 1:

PPort_PD is the <u>average</u> power drawn by a single-signature PD, defined in Equation (145–23). PPort_PD-2P is the <u>average</u> power drawn by a given Mode of a dual-signature PD, defined in Equation (145–24).

$Pport_PD = \int_{t=n}^{t=n+1} VPD * Iport(t)dt$	(145-23)
$Pport_PD_2P = \int_{t=n}^{t=n+1} VPD * Iport_2P(t)dt$	(145-24)
Pport_PD = VPD*lport (145–23)
Pport_PD-2P = VPD*lport-2P	(145–24)

For single-signature PDs, the average-value of PPort_PD shall not exceed PClass_PD for the assigned class. For a dual-signature PD, the average value of PPort_PD-2P shall not exceed PClass_PD-2P for the assigned class.

Option 2:

PPort_PD is the <u>average</u> power drawn by a single-signature PD, defined in Equation (145–23). PPort_PD-2P is the <u>average</u> power drawn by a given Mode of a dual-signature PD., defined in Equation (145–24).

For single-signature PDs, the average-value of PPort_PD shall not exceed PClass_PD for the assigned class. For a dual-signature PD, the average value of PPort_PD-2P shall not exceed PClass_PD-2P for the assigned class.