Contents

Simplifying Equation 33-15. .. 1
Annex A - The objective from May 2016 contribution.. 3
Annex B - Derivation of Equation 33-15... 4
Annex C - Does $\mathrm{t}_{0}<49 \mathrm{msec}$ is OK?.. 7

Simplifying Equation 33-15.

Comment:

In July meeting we have updated Figure 33-26 and Equation 33-15 for D1.8.

1. In Figure 33-26 there is text missing marked in RED.
2. Equation 33-15 can be simplified per the work done in:
http://www.ieee802.org/3/bt/public/may16/darshan 18 0516.pdf (See Annex A for reference in this document.

Proposed Remedy

1. Update Figure 33-26 with the additions marked RED:

Figure 33-26 - linrush-2P and linrush current and timing limits, per pairset in POWER_UP state

2. Update Equation 33-15 as follows:

2.1: Replace $a \times\left(t+t_{0}\right)+b$ from the $3^{\text {rd }}$ line
with: $\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(0.001+t_{0}-t\right)}{\left(t_{2}-t_{1}\right)}$
2.2 Delete from the "where" list the " a " and " b " constants (they are already embedded in the new equation):

$$
\begin{aligned}
& a=-\frac{(50-\mathrm{Im})}{99 \times 10^{-5}} \\
& \text { and } \\
& b=50-a \times\left(t_{0}+10^{-5}\right)
\end{aligned}
$$

2.3 Update the definition of t_{0} in the "where" list to:

" t_{0} is the time when IPort-2P exceeds IInrush-2P max for the first time during POWER_UP. The range of t_{0} is: $0 \leq t_{0} \leq 49 \mathrm{msec}$."

Annex A - The objective from May 2016 contribution.

See: http://www.ieee802.org/3/bt/public/may16/darshan 18 0516.pdf
"Note: I am expecting that the new equation above $a \times\left(t+t_{0}\right)+b$ and
$a=-\frac{(50-\mathrm{Im})}{99 \times 10^{-5}}$
$b=50-a \times\left(t_{0}+10^{-5}\right)$
Will be converged to the same equation in D1.7 i.e. $\mathrm{Im}+(50-\mathrm{Im})^{*}(0.001-\mathrm{t}) / 99^{*} 10^{\wedge}-5$. Will be verified for D1.8. "

Annex B - Derivation of Equation 33-15.

The following derivation will address $f(t)$ part which is marked in red:

Figure 33-26 - linrush-2P and linrush current and timing limits, per pairset in POWER_UP state

$$
I_{\text {PSEIT-2P }}(t)=\left\{\begin{array}{ccc}
\operatorname{Im} a x & \text { for } & 0<t<t_{0} \\
50 & \text { for } & t_{0}<t<\left(t_{0}+10 \times 10^{-6}\right) \\
f(t) & \text { for } & \left(t_{0}+10 \times 10^{-6}\right)<t<\left(t_{0}+0.001\right) \\
\operatorname{Im} a x & \text { for } & \left(t_{0}+0.001\right)<t<0.075
\end{array}\right\}
$$

From observation, the value of equation $33-15$ in the range 10 usec to 1 msec in D 1.7 should be the same as in D1.8 in the range $\left(t_{0}+10 \times 10^{-6}\right)<t<\left(t_{0}+0.001\right)$ without being dependent in t_{0} since its slope described by $f(t)$, the maximum value (50A) and the minimum value (Inrush-2P_max or linrush which is described by Imax) will remain the same.
t_{0} is limited to 49 msec (50 msec maximum PD inrush time duration minus 1 msec PD max transient time during PD inrush period).

Derivation for $f(t)=a * t+b$ as was in D1.7 (prior adding the feature that Inrush transient part above Im can be shift by t_{0} :

$$
\begin{array}{ll}
\begin{array}{l}
f(t)=a \cdot t+b \\
50=a \cdot t_{1}+b \\
\operatorname{Im} a x=a \cdot t_{2}+b \\
a=\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)}
\end{array} & f(t)=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(t-t_{2}\right)}{\left(t_{1}-t_{2}\right)}= \\
b=\operatorname{Im} a x-a \cdot t_{2}=\operatorname{Im} a x-\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)} \cdot t_{2} & =\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot(t-0.001)}{-99 \cdot 10^{-5}} \\
f(t)=a \cdot t+b=\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)} \cdot t+\operatorname{Im} a x-\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)} \cdot t_{2} \Rightarrow & f(t)=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot(0.001-t)}{99 \cdot 10^{-5}}
\end{array}
$$

Simplifying $f(t)$ as in D1.8 by embedding the variables " a " and " b " in the main equation:
$f(t)$ is allowed to shift by t_{0} from $t=0$ to $t=49 \mathrm{msec}$.
From observation the function developed for D1.7: $f(t)=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot(0.001-t)}{99 \cdot 10^{-5}}$
can be modified to address the shift in time (the quick way):
$f(t)=f\left(t-t_{0}\right)=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(0.001-\left(t-t_{0}\right)\right)}{99 \cdot 10^{-5}} \Rightarrow$
$f(t)=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(0.001+t_{0}-t\right)}{99 \cdot 10^{-5}}$
Testing: Imax=0.45, $t=t 1=\left(t_{0}+10 u s e c\right)$.

$$
f(t)=0.45+\frac{(50-0.45) \cdot\left(0.001+t_{0}-\left(t_{0}+10 \cdot 10^{-6}\right)\right)}{99 \cdot 10^{-5}}=50 \mathrm{~A}
$$

Testing: Imax $=0.45, \mathrm{t}=\mathrm{t} 2=\left(\mathrm{t}_{0}+1 \mathrm{msec}\right)$.
$f(t)=0.45+\frac{(50-0.45) \cdot\left(0.001+t_{0}-\left(t_{0}+0.001\right)\right)}{99 \cdot 10^{-5}}=0.45 \mathrm{~A}$

Detailed derivation (OPTION 1):
$f(t)=a \cdot t+b$
$50=a \cdot t_{1}+b$
$\operatorname{Im} a x=a \cdot t_{2}+b$
$a=\frac{(50-\operatorname{Im} a x)}{\left(\left(t_{1}+t_{0}\right)-\left(t_{2}+t_{0}\right)\right)}=\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)}$
$b=\operatorname{Im} a x-a \cdot t_{2}=\operatorname{Im} a x-\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)} \cdot t_{2}$
$f(t)=a \cdot t+b=\frac{(50-\operatorname{Im} a x) \cdot t}{\left(t_{1}-t_{2}\right)}+\operatorname{Im} a x-\frac{(50-\operatorname{Im} a x) \cdot t_{2}}{\left(t_{1}-t_{2}\right)}=$
$=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(t-t_{2}\right)}{\left(t_{1}-t_{2}\right)}$
$t_{2}=t_{0}+0.001$
$f(t)=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(t-\left(t_{0}+0.001\right)\right)}{\left(t_{1}-t_{2}\right)}=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(0.001+t_{0}-t\right)}{\left(t_{2}-t_{1}\right)}$

Detailed derivation (OPTION 2 - The form used in D1.8):
In option 2 the only difference is that " b " was derived using equation (1) while in option 1 it was derived by using equation (2).
$f(t)=a \cdot t+b$

1. $50=a \cdot t_{1}+b$
2. $\operatorname{Im} a x=a \cdot t_{2}+b$
$a=\frac{(50-\operatorname{Im} a x)}{\left(\left(t_{1}+t_{0}\right)-\left(t_{2}+t_{0}\right)\right)}=\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)}$
$b=50-a \cdot t_{1}=50-\frac{(50-\operatorname{Im} a x)}{\left(t_{1}-t_{2}\right)} \cdot t_{1}$
$f(t)=a \cdot t+b=\frac{(50-\operatorname{Im} a x) \cdot t}{\left(t_{1}-t_{2}\right)}+50-\frac{(50-\operatorname{Im} a x) \cdot t_{1}}{\left(t_{1}-t_{2}\right)}=$
$=\operatorname{Im} a x+\frac{(50-\operatorname{Im} a x) \cdot\left(t-t_{1}\right)}{\left(t_{1}-t_{2}\right)}$
$t_{1}=t_{0}+10 \cdot 10^{-6}$
$f(t)=50+\frac{(50-\operatorname{Im} a x) \cdot\left(t-\left(t_{0}+10 \cdot 10^{-6}\right)\right)}{\left(t_{1}-t_{2}\right)}=50+\frac{(50-\operatorname{Im} a x) \cdot\left(10 \cdot 10^{-6}+t_{0}-t\right)}{\left(t_{2}-t_{1}\right)}$

Testing: Imax=0.45, $\mathrm{t}=\mathrm{t} 1=\left(\mathrm{t}_{0}+10 \mathrm{usec}\right)$.

$$
f(t)=50+\frac{(50-\operatorname{Im} a x) \cdot\left(10 \cdot 10^{-6}+t_{0}-t\right)}{\left(t_{2}-t_{1}\right)}=50+\frac{(50-0.45) \cdot\left(10 \cdot 10^{-6}+t_{0}-\left(\mathrm{t}_{0}+10 \cdot 10^{-6}\right)\right)}{99 \cdot 10^{-5}}=50 \mathrm{~A}
$$

Testing: Imax $=0.45, \mathrm{t}=\mathrm{t} 2=\left(\mathrm{t}_{0}+1 \mathrm{msec}\right)$.

$$
\begin{aligned}
& f(t)=50+\frac{(50-\operatorname{Im} a x) \cdot\left(10 \cdot 10^{-6}+t_{0}-t\right)}{\left(t_{2}-t_{1}\right)}=50+\frac{(50-0.45) \cdot\left(10 \cdot 10^{-6}+t_{0}-\left(\mathrm{t}_{0}+0.001\right)\right)}{99 \cdot 10^{-5}}= \\
& =50+\frac{(49.55) \cdot\left(10 \cdot 10^{-6}-(0.001)\right)}{99 \cdot 10^{-5}}=0.45 \mathrm{~A}
\end{aligned}
$$

Annex C - Does $\mathrm{t}_{0}<49 \mathrm{msec}$ is OK?

A PD may finish inrush period within 1 msec and the inrush period may be delayed up to 49 msec .
Example:

linrush $[\mathrm{A}]$	Tinrush $[\mathrm{msec}]$	$\mathrm{C}[\mathrm{uF}]$	$\operatorname{Vpd}[\mathrm{V}]$
0.3	0.95	5	57

Tinrush <1msec.

As a result t_{0} max $=50 \mathrm{msec}-1 \mathrm{msec}=49 \mathrm{msec}$

