Cost Comparison between Different 4PPoE Implementations

Kousi Balasubramanian
John Wilson
Sesha Panguluri
David Abramson

IEEE 802.3bt, March 2014 Plenary

Contributors

- Jean Picard - Texas Instruments
- Victor Renteria - Belfuse Inc.
- Farid Hamidy - Pulse Electronics
- Ken Coffman - Fairchild

Supporters

- Jean Picard - Texas Instruments
- Farid Hamidy - Pulse Electronics
- Victor Renteria - Belfuse Inc.
- Fred Schindler - Seen Simply
- Miklos Lukacs - Silicon Laboratories
- David Tremblay - Hewlett Packard
- Leonard Stencel - Bourns
- Yair Darshan - MircroSemi
- Rick Frosch - Phihong
- Yakov Belopolsky - Bel Stewart Connector
- Ken Coffman - Fairchild

Terminology

- 1 Power Channel
- One FET switch for a 4 Pair Port

- 2 Power Channel
- One FET switch per 2 pair for a 4 Pair Port

System Development \& Deployment Costs

- PoE subsystem cost consists of 3 elements:

1. Material Costs

PCB, Power suppl(ies), RJ45+Magnetics, Port Controller IC, Per-Port Discretes, I2C Bus Isolation
2. Development Costs

Schematic design \& component selection
Layout: prototyping, system test, refinements
Thermal studies
3. Inventory Costs and Marketing/Time-To-Market (TTM)

Inventory: carrying costs, taxes, etc.
Marketing (soft costs): opportunity loss if TTM stretches out

This presentation will focus on Material Cost comparisons between 1 Power Channel and 2 Power Channel implementations

PSE Material Cost - Drill Down

Material Costs

- PCB: multi-layer PCB
- Power suppl(ies)
- RJ45+Magnetics: center-tap capable transformer/injector, extra LED (optional) to indicate PoE is enabled
- Port Controller IC (power manager IC optional)
- Per-Port Discretes: FETs, Rsense, TVS, port cap
- I2C bus isolation: optocoupler or isolation IC

PSE Breakout: 24-port 4PPOE Switch Example

- Costs impacted by the choice of 2-Power Channel vs. 1-Power Channel architectures will be explored using a 24 Port Switch Use Case
- The multipliers are compared to a 30W IEEE 802.3-AT base case

The multipliers are an estimate since actual prices and volumes vary

- The analysis includes components whose cost vary between the 2 implementations

Common components like Power Supply etc., are not included

PSE Breakout: Controller IC Cost Impact External FET Solution

	Cost Increase over 30w AT		
Solution	2-Power Channel	1-Power Channel	
External FET	$2 x$	$1.4 x$	-30%

- 1 Power Channel must support high accuracy ADC
- 2x dynamic range/Higher SNR results in silicon cost increase
- A larger dynamic range puts more stress on analog circuit design to meet accuracy requirements.
- Could also require more complex digital circuitry.
- Makes it more difficult to implement on low-cost mixed signal process ${ }^{1}$.
- 2-Power Channel

- Requires two "AT" chip ports per RJ45

[^0]
PSE Breakout: Controller IC Cost Impact Internal FET Solution

	Cost Increase over 30W AT		
	2-Power Channel	1-Power Channel	Delta Between 1- and 2- Power Channel
Integrated FET	$2 x$	$1.8 x$	-10%

- 1 Power Channel
- Silicon Area Increase
- Major contributing factor for this size increase is the FET
- Required to keep total power dissipation at acceptable level and match power losses
- 2 Power Channel
- Requires two "AT" ports per RJ45

PSE Breakout: Port TVS/Rsense Components Cost Impact

Component	Cost Increase over 30W AT		
	2-Power Channel	1-Power Channel	Delta between 1- and 2- power channel
	$2 x$	$1 x$	-50%
Rsense	$2 x$	$3 x$	$+50 \%$

- TVS: 2-power channel case requires 1 TVS per 2-pair.
- Rsense: Assumes same sense resistor value (for current measurement accuracy during DC-Disconnect for existing "AT" PDs

2 POWER CHANNEL:

Sample Power Dissipation per sense resistor: (for 60W Case)

- $P=I^{2} R=0.6^{*} 0.6^{*} 0.25=0.09 W^{1}$
- Including derating $\underline{0.25 W}$ rated sense would be good
- Sense Resistor Size - $\underline{0805}$

1 POWER CHANNEL:

Sample Power Dissipation per sense resistor: (for 60W case)

- $P=I^{2} R=1.2^{*} 1.2^{*} 0.25=0.36 W$.
- Including derating 1W rated sense would be good
- Sense Resistor Size - 2512
${ }^{1}$ - We are assuming a simplified model that doesn't cover unbalance.

PSE Breakout: Port FET Component Cost Impact

	Cost Increase over 30w AT		
Component	2-Power Channel	1-Power Channel	Delta between 1-and 2-power channel
FET	$2 x$	$1.5 x$	-25%

- FET Choice is controlled by two considerations
- Thermal Dissipation during normal operation
- SOA (Safe Operating Area)
- Same power dissipation for 2 Power Channel and 1 Power channel assumed

2 POWER CHANNEL:
 - Current per FET = Iport/2
 - Twice number of FETs per port

1 POWER CHANNEL:

- Current per FET = lport
- SOA performance for 1 Power channel should support higher current compared to 2 power channel in all situations (including Short circuit)
- FET die Size of 1 power channel $=2 \times$ FET die size of 2 power channel \rightarrow Cost Impact

PSE Breakout: Magnetics/Jack Cost Impact

Cost Increase over 30W AT		
2-Power Channel	1-Power Channel	Delta between 1- and 2- power channel
$1.15 x^{2}$	$1.35 x^{1,2}$	27%

1,2 - See "Magnetics Cost Increase Notes" in backup slides for more information.

2 POWER CHANNEL:

- Independent control over each 2pair
- Worst case current per 2 Pair magnetics = Iport/2

1 POWER CHANNEL:

- Has no independent control over each of the 2pair
- Worst case current per 2 pair magnetics = lport (refer to picture below)
- To avoid damage, bigger Magnetics needed to handle higher current \rightarrow Cost Increase

Typical compliant PoE configuration

- When there is a 2-pair mid span and 4-pair end span connected to same PD:
- If end span wins the arbitration:
- 1 power channel: all power will be provided on one 2-pair.
- For example, if PD draws 60W \rightarrow all of this is provided over 2-pair (1.2A over 2-pair Magjack as opposed to 0.6A).

PSE Breakout: PCB Cost Impact

Cost Increase over 30W AT		
2-Power Channel	1-Power Channel	Delta between 1-and 2- power channel
$1 x$	$1.2 x$	$+20 \%$

- Thermal Dissipation needs drive increased cost
- Using the 1-power channel approach instead of the 2-power channel approach introduces additional dissipation
- For a group of 24 ports operating at high power (60W PSE output):
- 1-Power channel has 2X dissipation compared to 2-Power channel
- Since the Rsense choice is same between 2-Power and 1-Power channel to provide accuracy
- Multiple GND planes, thicker copper (ex: 2 ounces) per layer.
- Larger board area is needed for same number of ports.
- Maximum number of high power ports per unit of PCB area is lower

PSE System Comparison: Component Cost Weighting

- Not all components contribute equally towards system cost
- Contribution in a typical base system of 2Pair 30W is shown
- These percentages were taken from a variety of sources and vendors; thus ranges are given for each component

Component	Contribution in 30W 2-Pair External FET solution	Contribution in 30W 2-Pair Internal FET Solution
Sense	$1-2 \%$	NA
FET	$7-9 \%$	NA
TVS diode	$1-2 \%$	$1-2 \%$
Controller	$13-16 \%$	$20-25 \%$
PCB	$13-16 \%$	$15-17 \%$
Magjack	$60-66 \%$	$64-68 \%$

Component Contribution - External FET

Component Contribution - Internal FET

- The minimum of the component contributions are used along with the multipliers shown in slides $8-13$ to arrive at the total system comparison between 1-power and 2-power channel

PSE Breakout: Cost Comparison Summary External FET Solution

- Taking into consideration the weighting of the various components, the data shows that when building a 60W system using external FETs:
The 2-Power Channel architecture is approximately 2% less costly than the 1-Power Channel architecture.
$\Delta=1-1+$ Dual Power Channel Cost Increase $/ 1+$ Single Power Channel Cost Increase $=1-1+0.34 / 1+0.37=0.02$

		Dual Power Channel		Single Power Channel	
Component	Weighting	Increase over AT*	Effective Contribution	Increase over AT*	Effective Contribution
Magjack	61.0\%	15.0\%	9.15\%	35.0\%	21.35\%
PCB	14.0\%	0.0\%	0.00\%	20.0\%	2.80\%
PoE Controller	14.0\%	100.0\%	14.00\%	40.0\%	5.60\%
FET	8.0\%	100.0\%	8.00\%	50.0\%	4.00\%
Sense Resistor	1.5\%	100.0\%	1.50\%	200.0\%	3.00\%
TVS Diode	1.5\%	100.0\%	1.50\%	0.0\%	0.00\%
Total Cost Increase			34.15\%		36.75\%

[^1]
PSE Breakout: Cost Comparison Summary Internal FET Solution

- Taking into consideration the weighting of the various components, the data shows that when building a 60W system using external FETs:
The 2-Power Channel architecture is approximately 7% less costly than the 1-Power Channel architecture.
$\Delta=1-1+$ Dual Power Channel Cost Increase $/ 1+$ Single Power Channel Cost Increase $=1-1+0.31 / 1+0.41=0.07$

		Dual Power Channel		Single Power Channel	
Component	Weighting	Increase over AT*	Effective Contribution	Increase over AT*	Effective Contribution
Magjack	64.0\%	15.0\%	9.60\%	35.0\%	22.40\%
PCB	15.0\%	0.0\%	0.00\%	20.0\%	3.00\%
PoE Controller	20.0\%	100.0\%	20.00\%	80.0\%	16.00\%
TVS Diode	1.0\%	100.0\%	1.00\%	0.0\%	0.00\%
Total Cost Increase			30.60\%		41.40\%

* Cost increase indicated is for a 60W system compared to a 30W AT system.

Further Cost Considerations

- The numbers reported in this presentation are very conservative and the cost advantage of the 2-power channel architecture is probably greater than shown here.
- In addition, these factors have not been included in the previous analysis:

2-Power Channel

- The indirect savings that come from lower power dissipation (sense resistor, slide 6)
- There is volume advantage as it can use parts available today

1- Power channel

- Includes only PSE side magjack cost increase
- PD side will also need larger jack magnetics leading to increased cost
- Cost increase for 100 W case will be more and non linear increase vs. 60 W case

Summary

- Magnetics are the main contribution to system cost (more than 60\%)
- 1-Power channel approach's magnetics are 20\% higher than 2-Power channel
- PoE controller cost contribution is much less than magnetics contribution
- Conclusion:
- The data in this presentation affirms, 2-power channel is not twice as costly as 1 power channel. The costs are very comparable and in some cases that 2 Power channel implementations are less costly than 1 Power channel implementations

Backup

Magnetics Cost Increase Notes

- Note 1:

This is an extremely conservative number for the following reasons:

- Assumes bigger magnetics only on ALT- A pair in order to handle the midspan case.
- Cost will increase even more if normal wire faults are considered where ALT-A or ALT-B both could be carrying full port current.
- This increase is the cost associated with preventing damage to the magnetics (not ensuring operation).
- The above cost increase is for 60W. Cost increase as we move to 100 W will not be linear.
- In addition, this does not include cost increase due to PD side magnetics.
- Note 2:

Bringing out the extra center-taps drives a cost increase for both 1-power channel and 2-power channel implementations.

Impact of Doubling the Current Sensing Dynamic Range Beyond what is done Today

- Solutions could be:

Use 2 separate chips (maybe 2 separate devices) and different silicon process (each one optimized for analog or digital), which means much higher cost.
If single-chip solution: use a different process and/or larger/more expensive die to meet analog accuracy requirement.

- In all cases, there will be significant cost increase.
- Also consider that some manufacturers have capability to do multi-chip while others don't, or can do it at much higher costs.

Chipset solution

Multichip solution

Integrated solution

PSE Breakout: Cost Comparison Summary External FET Solution ${ }^{1}$

Component	Cost Increase of a 60W system compared to an AT 30W system		Reasons for Cost Increase compared to 30W IEEE802.3AT system
	2-Power Channel	1-Power Channel	
TVS diode	100\%	0\%	2 Power Channel : Twice number of Diodes
PoE Controller	100.00\%	30-50\%	2 Power Channel: Twice number of chips 1 Power Channel: Silicon Area increase
Magjack	15.00\%	30-40\%	$\begin{aligned} & 2 \text { Power Channel: Extra center tap access } \\ & 1 \text { Power Channel: Extra center tap access + bigger } \\ & \text { Magjack capable of carrying all current in one } 2 \text { pair }{ }^{2} \\ & \hline \end{aligned}$
FET	100.00\%	50.00\%	2 Power Channel: Twice number of FETs 1 Power Channel: Bigger FET to carry all current
Sense	100.00\%	200.00\%	2 Power Channel: Twice number of resistors 1 Power Channel: Bigger Sense Resistor - 4X Power rating compared to 2 Power channel
PCB	0.00\%	20.00\%	1 Power channel: More thermal relief needed due to increased dissipation

${ }^{1}$ For 2 power channel solution, there is a volume advantage as it can use parts available today - The above table does not reflect this additional cost benefit
${ }^{2}$ Includes only PSE side magjack cost increase. Note PD side will also need bigger magjack \rightarrow More cost
Shows only 60W case - Cost increase for 100W case will be more and non linear increase
Assumes bigger magnetics only on ALT- A pair \rightarrow to handle the midspan case
Cost will increase even more if normal wire faults are considered where ALT-A or ALT-B both could be carrying full port current

PSE Breakout: Cost Comparison Summary Internal FET Solution ${ }^{1}$

Component	Cost Increase of a 60W system compared to an AT 30W system		Reasons for Cost Increase compared to 30W IEEE802.3AT system
	2-Power Channel	1-Power Channel	
TVS diode	100.00\%	0\%	2 Power Channel : Twice number of Diodes
PoE Controller	100.00\%	80\%	2 Power Channel: Twice number of chips 1 Power Channel: Silicon area increase
Magjack	15.00\%	30-40\%	2 Power Channel: Extra center tap access 1 Power Channel: Extra center tap access + bigger Magjack capable of carrying all current in one 2 pair ${ }^{2}$
PCB	0\%	20.00\%	1 Power channel: More thermal relief needed due to increased dissipation

[^2]
Discrete Magnetics - External FET

Component	Weighting	2- Power Channel		1-Power Channel	
		Increase over AT	Effective contribution	Increase over AT	Effective Contribution
Discrete magnetics	50%	15%	7.5%	35%	17.5%
PCB	21%	0%	0%	20%	4.2%
PoE Controller	17%	100%	17%	40%	6.8%
FET	8%	100%	8%	50%	4%
Sense Resistor	2%	100%	2%	200%	4%
TVS diode	2%	100%	2%	0%	0%
TOTAL COST INCREASE			36.5%		36.5%

Discrete Magnetics - Internal FET

Component	Weighting	2- Power Channel		1-Power Channel	
		Increase over AT	Effective contribution	Increase over AT	Effective Contribution
Discrete magnetics	53%	15%	7.95%	35%	18.55%
PCB	24%	0%	0%	20%	4.2%
PoE Controller	21%	100%	24%	80%	19.20%
TVS diode	2%	100%	2%	0%	0%
TOTAL COST INCREASE			33.95%		41.95%

[^0]: 1 - Refer to Backup slides for more details

[^1]: * Cost increase indicated is for a 60W system compared to a 30W AT system.

[^2]: ${ }^{1}$ For 2 power channel solution, there is a volume advantage as it can use parts available today - The above table doesn't include this cost benefit
 ${ }^{2}$ Includes only PSE side magjack cost increase. Note PD side will also need bigger magjack \rightarrow More cost Shows only 60W case - Cost increase for 100W case will be more and non linear increase

