# An Optimum Approach to Apply DC Disconnect

## System Efficiency, Accuracy and Thermal Considerations

Jean Picard March 2014



## **Supporters**

- Kousalya Balasubramanian / Cisco
- Fred Schindler / SeenSimply
- Yair Darshan / Microsemi
- Sesha Panguluri / Broadcom
- John N. Wilson / SiLabs
- Victor Renteria / Bel Stewart & TRP Connector
- Brian Buckmeier / Bel Stewart Connector
- Pavlick Rimboim / Microsemi
- Christian Beia / ST



## **Working Premises**

The motivation of this work is to analyze DC-Disconnect to outline impact on

- System Efficiency, that includes
  - PSE Dissipation
  - Cable Dissipation
- Thermal impact on PSE internal circuitry
- Current Measurement Accuracy

The above are analyzed as applicable to the following cases:

- "bt" PD interface
- Backwards compatibility



## **DC-disconnect** as applicable to "bt" PDs

- We need to maintain the accuracy in disconnect sensing.
- Hence, for the "bt" PD, DC disconnect threshold should be doubled (7.5 +/- 2.5mA  $\Rightarrow$  15 +/- 5mA) to support multiple implementations.
  - DC disconnect based on sum of currents  $(I_A + I_B)$
  - Shorter MPS duty-cycle to reduce standby system consumption
  - Depending on implementation, also able to detect if one pair set has been disconnected while the other one is still providing power.



## DC Disconnect as applicable to single "AT" PD interface



- If "bt" PSE is connected to <u>single</u> "at" (Type 1 or 2) PD interface:
  - − DC disconnect threshold **CANNOT** change  $\rightarrow$  defined in IEEE spec: 5-10mA
- There are different approaches towards meeting the above
  - <u>Approach #1</u>: Drive 4P all the time.
  - Approach #2 (Best): Mix and Match



## **4P Power Savings**

- To proceed with the comparison of the two approaches, we use the example of 48 port switch configured as following:
  - 36 ports connected to low power PDs
  - 12 ports connected to high power PDs
- In the CFI (<u>http://www.ieee802.org/3/4PPOE/public/mar13/index.html</u>), it was demonstrated how 4P is more efficient than 2P even for <25.5W PDs. For system above, the savings from running the low power ports over 4P is shown below.

| System Assumpt                    | Value               | Units |   |
|-----------------------------------|---------------------|-------|---|
| Cable length                      | 40                  | m     |   |
| Link Resistance                   | 0.125               | Ohm/m |   |
| Number of low power Ports (assump | 36                  |       |   |
| Voltage at PSE output             | 50                  | V     |   |
| Example #1                        |                     |       |   |
| Average PD Input Power            | 8                   | W     |   |
| Average PSE output power if 2P    |                     | 8.13  | W |
| Cable savings in going to 4P for  | per port            | 0.066 | W |
| low power ports                   | all low power ports | 2.36  |   |

## Approach # 1 – Drive 4P All the Time

- If "bt" PSE is connected to a single "at" PD interface:
  - DC disconnect threshold CANNOT change
    - $\Rightarrow$  is same as defined in "at" spec: 5-10 mA
    - $\Rightarrow$  this mandates a "sense" resistor value (0.255 Ohms <sup>1</sup>) otherwise the accuracy of DC-Disconnect measurement will go down.
- System power loss in high power (>25.5W PD or >30W PSE) cases will be the drawback



A <u>1-power channel</u> configuration drives <u>all</u> pairs at the <u>same time</u>.

This limitation is due to its architecture.

Note 1: Lowest in industry sense resistor value used by PSE controllers working with external MOSFET is 0.255 Ohm.



### Approach # 1 – Drive 4P All the Time Additional System loss from High Power ports

| 1-Power Channel System<br>Parameters                |                                             | Value | Units |
|-----------------------------------------------------|---------------------------------------------|-------|-------|
| Number of High Power PSE Ports (53.9W) <sup>1</sup> |                                             | 12    | Port  |
| Voltage at PSE output                               |                                             | 50    | V     |
| Rsense                                              |                                             | 0.25  | Ohm   |
| 1-Power Channel                                     |                                             |       |       |
| Current per switch                                  |                                             | 1.08  | А     |
| PSE Power loss (due to Rsense only)                 | per "53.9W" PSE output Port <sup>1,2</sup>  | 0.296 | W     |
|                                                     | all "53.9W" PSE output Ports <sup>1,2</sup> | 3.56  |       |

Note 1: PSE with 53.9W output corresponds to PD with 51W input 40m cable length. Note 2: If **60W PSE** output, the Rsense **loss becomes 0.3672 W each**, which means **4.406W** for 12 ports.



## Approach # 1 – Drive 4P All the Time Additional System loss from High Power ports

### **Approach #1 Summary:**

- The 4P efficiency savings are lost by excess power dissipation on the sense resistor.
  - The concept of **4P power savings is lost**.
  - The extra dissipation is <u>concentrated inside the PSE</u>, leading to **potential** severe thermal issues.
- Ways to counter act this include:
  - Reduced accuracy in DC-Disconnect
  - Increased System cost
  - Or Use approach #2



## Approach #2 Mix and Match

#### • Methodology:

- Drive 4P if "bt" PD
- If "at" PD:
  - Drive 4P, then if DC disconnect is "suspected" <sup>1</sup>, turn off 2<sup>nd</sup> switch and do DC disconnect check with 1<sup>st</sup> switch (I<sub>A</sub>).
  - If the test indicates there is no disconnect, or if the current goes back up for some time, turn back ON 2<sup>nd</sup> switch.
  - This will provide Higher accuracy due to higher signal amplitude in sensing element.
- This method combines <u>all the positive</u> system aspects

Note 1: DC disconnect "suspected" means  $(I_A + I_B) < 1^{st}$  arbitrarily defined threshold.



## **Approach #2 Mix and Match**

| 2-Power Channel System Parameters                                                                   |                                    | Value | Units |
|-----------------------------------------------------------------------------------------------------|------------------------------------|-------|-------|
| Number of High Power PSE Ports (53.9W)                                                              |                                    | 12    | Port  |
| Voltage at PSE output                                                                               |                                    | 50    | V     |
| Rsense                                                                                              |                                    | 0.255 | Ohm   |
| 2-Power Channel                                                                                     | Approach #2                        |       |       |
| Current per switch                                                                                  |                                    | 540   | mA    |
| PSE Power loss (due to Rsense only) <sup>1</sup>                                                    | per "53.9W" PSE Port <sup>2</sup>  | 0.148 | W     |
|                                                                                                     | all "53.9W" PSE Ports <sup>2</sup> | 1.78  |       |
| Overall System Efficiency, Comparison with 1-Power Channel                                          |                                    |       |       |
| <b>Extra</b> Power Loss on Rsense from the 12 High Power PSE Ports if with 1-Power Channel $^{1,2}$ |                                    |       | W     |
| Cable savings in going to 4P for low power ports if 36 x 8W PDs                                     |                                    |       | W     |

With <u>1-Power Channel</u>, the <u>4P efficiency savings are lost</u> by excess power dissipation on the sense resistor.

Note 1: FET losses assumed to be the same, a **larger (expensive)** FET will be needed for the 1-Power channel configuration to compensate for 2x the current and higher junction temperature. Note 2: PSE with 53.9W output corresponds to PD with 51W input if 40m cable length.



## Approach #2 Mix and Match

## Approach #2 Summary:

- This method combines:
  - High sensing accuracy.
  - Low PSE internal dissipation
    - Maximizing the savings from the use of 4P distribution.
    - Simplifying thermal design, lower costs.
  - Both of them already achieved with <u>technologies and</u> <u>implementations used today</u>
- AND it also provides improved cable efficiency for low power ports by using 4P distribution.
- This approach is not possible with single switch configuration.



## **Thermal Analysis Discussion**

- System-level thermal analysis has been conducted to verify the feasibility and limitations of implementing multiple 4P higher power (60W) ports while using the 1-power channel architecture.
  - Comparisons were done with a 2-power channel architecture (case A).
- The system parameters were:
  - Generic system model, operating at 55C ambient.
  - With PSE controllers card (PCB Size = 6.8" x 1.15") inside an enclosure with forced air convection.
  - 0.255 ohm Rsense per power channel.

| SIM<br>Case | # HP Ports <sup>1</sup><br>(1.2A) |                   | Description                              | FET<br>Rdson<br>@25°C | Rsense<br>Physical<br>size |
|-------------|-----------------------------------|-------------------|------------------------------------------|-----------------------|----------------------------|
|             | Total                             | per<br>controller |                                          | Normalized<br>(unit)  |                            |
| А           | 24                                | 4                 | 2 power channel                          | 1                     | 1x                         |
| В           | 24                                | 4                 | 1 power channel, "bigger" FET and Rsense | 0.5                   | 3.5x                       |
| С           | 48                                | 8                 | 1 power channel, "bigger" FET and Rsense | 0.4                   | 3.5x                       |

Note 1: High Power Ports



## **Thermal Analysis – Simulation Results**

| SIM<br>Case | # HP<br>Ports | Description                                       | FET    | PCB<br>T1 | PCB<br>T2 |
|-------------|---------------|---------------------------------------------------|--------|-----------|-----------|
| А           | 24            | 2 power channel                                   | 94 °C  | 90 °C     | 92 °C     |
| В           | 24            | 1 power channel, "bigger" FET (2x) <sup>1</sup>   | 108 °C | 97 °C     | 103 °C    |
| С           | 48            | 1 power channel, "bigger" FET (2.5x) <sup>1</sup> | 146 °C | 132 °C    | 131 °C    |

#### Ambient outside of the enclosure : 55°C

Note: these simulations are <u>only for comparison purposes</u>. Also, simplified models were used for the analysis.

Note 1: Impact on FET dissipation of Rdson variation over junction temperature are included in simulations.







Implementing a high number of High Power ports with 1-power channel approach results in thermal issues.



## **Thermal Test Results**

- Tests have been conducted to validate the limitations of implementing multiple 4P higher power (60W) ports while using the 1-power channel architecture.
- The system parameters were:
  - Operating free air at ~25°C ambient.
  - With 4-layer (2oz copper) 8-Power Channel PSE daughter card.

| Test<br>Case | # HP<br>Ports <sup>1</sup> | Description                        | РСВ   | Free<br>air | Temp<br>Elevation |
|--------------|----------------------------|------------------------------------|-------|-------------|-------------------|
| А            | 4                          | 2 power channel                    | 53 °C | ~23 °C      | ~30 °C            |
| В            | 4                          | 1 power channel, "bigger" FET (2x) | 69 °C | ~23 °C      | ~46 °C            |
| С            | 8                          | 1 power channel, "bigger" FET (2x) | 91 °C | ~23 °C      | ~68 °C            |

#### Note 1: High Power Ports





## **Thermal Analysis – Summary**

- Implementing a high number of High Power ports with <u>1-power channel</u> approach greatly <u>complicates the thermal design</u> and increases <u>costs</u>.
  - More PCB copper (# layers and thickness) for better heat spread.
  - Larger board for better board convection/radiation.
  - If fanless system, more thermal contacts from board to chassis.
- The table below summarizes the impact of the thermal limitations of 1power channel approach on system design:

|                                                                         | Dual Power Channel | Single Power Channel |
|-------------------------------------------------------------------------|--------------------|----------------------|
| Maximum Number of HP Ports/inch <sup>2</sup> of PCB                     | Higher             | Lower                |
| Maximum Number of<br>HP Ports/Controller on a<br>High Port Density Card | Medium             | Medium-Low           |



## **DC Disconnect Method – Comparison Summary**

| PD Configuration                     | Dual Power Channel<br>Approach #2                               | Single Power Channel<br>Approach #1                          |
|--------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|
| "bt" PD Interface                    | Supported                                                       | Supported                                                    |
|                                      | Can detect if one 2-pair<br>set is individually<br>disconnected | Cannot detect that only<br>one 2-pair set is<br>disconnected |
| "bt" PD Interface, High<br>Power PDs | Simple thermal design                                           | Thermal issues, complex thermal design                       |
| Single "at" PD Interface             | High accuracy                                                   | Highest PSE dissipation & temperature and                    |
|                                      | Lowest PSE dissipation & temperature                            | system cost                                                  |
|                                      | Lowest system cost                                              | Highest IC + PCB cost                                        |
|                                      | Highest system efficiency                                       | Medium-Low system<br>efficiency                              |

