Wired Fault Discovery

Fred Schindler, **Seen Simply** David Abramson, **W** Texas Instruments

Supporters:

Christian Beia, ST; Dave Dwelley, LT; Val Maguire, Siemon; Jean Picard, TI; Kousalya Balasubramania, Cisco; Victor Renteria, Bel Stewart; John Wilson, Silicon Labs; George Zimmerman, CME; Gaoling Zou, Maxim

IEEE 802.3bt Task Force, March 2014, Beijing

Wire Faults

- A **wire fault** causes a significant wire resistance change in the Ethernet channel.
- For example,
 - A broken wire.
 - A broken or loose connection.
- Valid Connection
- Fault

Wire Faults: Reasons to discover

- Wire faults cause
 - Ethernet data errors
 - Excess current to be drawn
 - Unreliable system operation
- Which leads to unhappy customers
 - That call support lines
- Discovering wire faults
 - Permits customers to debug the problem and may results in fewer support calls

$$R_{Chan} = 2\frac{R_{wire}}{4} = \frac{R_{wire}}{2}$$

Small channel resistance components are ignored.

 \mathbf{R}_{wire} is the resistance of a channel wire and connectors between the PSE and PD.

$$R_{Chan} = \frac{R_{wire}}{3} + \frac{R_{wire}}{4} = \frac{7R_{wire}}{12}$$

Channel resistance increases V_{PD} decreases I_{PD} increases I_A and I_B increase equally

$$I_A = I_B = \frac{V_x}{\frac{R_{wire}}{2}} = \frac{2V_x}{R_{wire}}$$
$$I_A + I_B = I_{PSE} = I_{PD}$$

$$R_{Chan} = \frac{R_{wire}}{2} + \frac{R_{wire}}{4} = \frac{3R_{wire}}{4}$$

Channel resistance increases I_{PD} increases I_{A} and I_{B} increase equally

$$I_A = I_B = \frac{V_x}{\frac{R_{wire}}{2}} = \frac{2V_x}{R_{wire}}$$

$$I_A + I_B = I_{PSE} = I_{PD}$$

$$R_{Chan} = \frac{R_{wire}}{3} + \frac{R_{wire}}{3} = \frac{2R_{wire}}{3}$$

Channel resistance increases I_{PD} increases I_B is 2x I_A

$$I_A = \frac{V_x}{R_{wire}}, I_B = \frac{V_x}{\frac{R_{wire}}{2}} = \frac{2V_x}{R_{wire}}$$

$$R_{Chan} = \frac{R_{wire}}{4} + \frac{R_{wire}}{2} = \frac{3R_{wire}}{4}$$

Channel resistance increases I_{PD} increases $I_{A} = 0$ $I_{B} = I_{PSE} = I_{PD}$

Wire Faults: Review 1

 $I_A = 0$ $I_B = I_{PD}$ This is considered a **major** I_{unbal} I_B is 2x I_A
This is considered a minor I_{unbal}

Current will be used to discover wire faults.

It may be easier to discover a major I_{unbal} compared to a minor I_{unbal} .

A 10-bit ADC can discover a minor current unbalance.

IEEE 802.3bt Task Force, March 2014, Beijing

Seen Simply

Wire Faults: Review 2

A wire fault increases the channel resistance.

A constant power PD load will increase I_{PD} and reduce V_{PD} to keep the load constant.

Wire faults may be discovered when I_A and I_B are affected differently.

		2P	4P	PSE Po	wer (W)	Vpd	(V)
Ppd (W)	Faults	Rchan (Ω)	Rchan (Ω)	2P	4P	2P	4P
25.5	0	12.5	6.25	30	27.4	42.5	46.6
25.5	1	18.8	7.29	34.3	27.7	37.1	46.0
25.5	2	25.0	9.38	motor boat	28.6	motor boat	44.6
51	0	NA	6.25	NA	60.0	NA	42.5
51	1	NA	7.29	NA	62.3	NA	40.9
51	2	NA	9.38	NA	68.7	NA	37.1

Cable is CAT 5, worst-case channel, $V_{PSE} = 50V$

The worst-case 2-fault case is shown.

Motor boat = PD moves between power on and power off states.

Seen Simply

Wire Fault: Customer View

ALT-A 2-pair systems with a wire fault

- No data
- Invalid power

DATA	Power	Description
Valid	Valid	System may operate in specification
Valid	Invalid	Not possible
Invalid	Valid	Not possible
Invalid	Invalid	2-pair invalid data and power

A wire fault results in a data link error.

Wire Fault: Customer View

ALT-B 2-pair systems and 4-pair systems using both power alternatives with a wire fault

- System operation is unreliable
- Systems have 2x more problems and are more difficult to debug compared to ALT-A systems

DATA	Power	Description
Valid	Valid	System may operate in specification
Valid	Invalid	2-pair impared power path
Invalid	Valid	2-pair or 4-pair system impared data path
Invalid	Invalid	2-pair or 4-pair invalid data and power

A wire fault does not always result in a data link error.

Wire Fault: Customer View

- 4-pair system operation is unreliable with a wire fault
 - Power demand increases, which is not green
 - PSE power may exceed operating limit
 PSE may remove power
 - PD may reach its minimum operating voltage
 PD may disconnect, because of UVLO
 - Data may not be reliable due to increased lunbal.
 - Cable current is higher than recommended

Wire Fault: Data & 4P Current

- Faults on Alternative-A are caught by all data rates.
- Faults on Alternative-B are not caught by data rates, 10BASE-T, 100BASE-T.
- If data is valid, current may be used to
 Cases with Valid Data
 IPSE
 IA, IB
 Combined
 Detected
 0

Cases with Valid Data	IPSE	Major Unbalance	Minor Unbalance
IA, IB	Combined	One is 0	One is 2x other
Detected	0	4	12
Missed	15	11	3
Coverage	0%	27%	80 %

Wire Fault: Midspans

Midspans do not have easy access to data status.

If current is used to catch all wire faults,

All Cases	IPSE	Major Unbalance	Minor Unbalance
IA, IB	Combined	One is 0	One is 2x other
Discover	31	121	185
Missed	224	134	70
Coverage	12%	47%	73%

More wire faults cases are discovered by making additional current measurements.

Normally $I_{AP} = I_{BP}$ = positive path currents $I_A = I_B$ = negative path currents $I_{AP} = I_{BP} = I_A = I_B$

With the fault shown,

$$I_{BP} = 2I_{AP}$$

$$I_{PSE} = I_{PD} = 2I_{AP} + I_{AP} = 3I_{AP} = I_A + I_B$$

$$I_A = I_B = \frac{3}{2}I_{AP}$$

Wire faults are evaluated by comparing measured currents.

Cases using IA, IB, and	and IAP or IBP	and IAP and IBP	and IAP or IBP and valid data	
Discover	235	235	255	
Missed	20	20	0	
Coverage	92 %	92 %	100 %	

Faults discovered with a current measurement only

All Cases	IPSE	Major Unbalance	Minor Unbalance
IA, IB	Combined	One is 0	One is 2x other
Discover	31	175	235
Missed	224	80	20
Coverage	12%	69%	92 %

Faults discovered when data is valid

Dual PD

Dual PD Equipment $I_A \neq I_B$

Cases with valid data	IPSE	Major Unbalance	Minor Unbalance
IA, IB	Combined	One is 0	One is 2x other
Discover	0	7	15
Missed	15	8	0
Coverage	0%	47%	100%

Either the PSE or the PD may measure currents used to discover wire faults.

Seen Simply

Wire Faults: measuring current

PSEs with two hot-swap circuits are capable of measuring current on both alternatives.

PSEs with one hot-swap circuit need extra circuits to measure current on both alternatives.

Conclusion

- Discovering wire faults permits corrective action.
- Wire faults cause measurable current unbalance
 - A PSE with two hot-swap circuits measures current unbalance.
 - A PSE with one hot-swap circuit requires extra circuitry to measure current unbalance.
- Measuring current unbalance provides significantly more wire fault coverage than measuring IPSE alone.
 - 4x coverage with major current unbalance
 - 6x coverage with minor current unbalance
- PSEs that measure current unbalance achieve 92% to 100% inclusive, wire fault coverage by,
 - Measuring one positive path alternative current or, by
 - Powering a 4-pair, dual-PD.
- 100% wire fault coverage is possible when data is considered.

Definitions + Expansion

Wire Fault, slide 2 R_{wire}, slide 4 Current unbalance, slide 9 Using positive path currents, slide 16 UVLO, slide13, under voltage lockout

If a 10-bit ADC with a 1A reference is used to measure current. A minor unbalance detects a 1mA difference which is less than the link maintenance current. Power-on currents are expected to be greater than 100 mA. Sense resistor tolerance does not significantly affect current ratios used to discover wire faults.

Expansion

This presentation focuses on using current to discover wire faults. In many cases the wire fault is visible using other means:

- P_{PSE} , and $I_{\text{PSE}}\,$ exceed limits
- $R_{\text{chan}}\,$ exceeds a limit
- V_{PD} is below a limit
- P_{PD} , exceeds a limit

The above issues may result in the system motor boating.