33.2.8.4 Continuous output current capability in the POWER_ON state

[Rch is already defined in Table 33-1 for a pairset.

In order that this comment can use the remedy for comment #56 for the new definitions R_Chan and R_Chan-2P, it is required that the remedy for comment #56 will be modified by replacing Rch with Rchan-2P in Table 33-1 as well and its related text.]

IPort-2P and IPort-2P-other are the currents on the pairs with the same polarity of the two pairsets

In addition to ICon, ICon-2P and ICon-2P unb as specified in Table 33–11, the PSE shall support the following AC current waveform parameters, while within the operating voltage range of VPort PSE-2P:

IPeak, IPeak-2P unb, and IPeak-2P minimum for TCUT-2P minimum and 5% duty cycle minimum on each powered pairset, where

- 1. Equation 33-8 is for Total Ipeak and using Total Ppeak-PD but using Rchan defined for 2-pairs while this equation is used for 4-pairs as well.
- 2. Equation 33-10 was derived for Rchan for 2-pairs i.e Ipeak-2P_unb/Ipeak-2P. This need to be specified.

$$I_{\text{peak}} = \left\{ \frac{V_{\text{psE}} - \sqrt{V_{\text{psE}}^2 - 4 \times R_{\text{Chan}} \times P_{\text{peak},\text{PD}}}}{2 \times R_{\text{Chan}}} \right\}_{\text{A}}$$
(33-8)

where

Vpse	is the voltage at the PSE PI as defined in 1.4.426
RChan	is the channel loop resistance as defined in 33.1.3
PPeak PD	is the total peak power a PD may draw for its Class; see Table 33-28.

IPeak is the total current of both pairs with the same polarity that a PSE supports. IPeak-2P unb is the minimum current due to unbalance effects that a PSE must support on a pairset as defined by Equation (33–9). IPeak-2P is the minimum current a PSE must support on each powered pairset, as defined by Equation (33–11).

$$I_{\text{Peak-2P_unb}} = \left\{ (1 + K_{\text{IPeak}}) \times \frac{I_{\text{Peak}}}{2} \right\}_{A}$$
(33-9)

where

KIPeak The value of KIPeak, defined in Equation 33–10, is based on a curve fit and is dimensionless. IPeak is the total peak current a PSE supports per Equation 33–12

K _{Ipeak} =	$\min(0.214 \times R_{\rm chan}^{-0.363}, 0.330)$	for Class 5		
	$\min(0.199 \times R_{chan}^{-0.350}, 0.300)$	for Class 6	(33-10)	
	$\min(0.180 \times R_{chan}^{-0.326}, 0.270)$	for Class 7	(55-10)	
	$\min(0.176 \times R_{chan}^{-0.325}, 0.260)$	for Class 8		

where

RChanis the channel loop resistance as defined in 33.1.3.Editor to divid Rchan by 2.

[See next page for more]

Updating 33.2.8.4 Continuous output current capability in the POWER_ON state_Yair Darshan March 2016r1 Page 1 of 2

A comment was made for this document to add to table 33-17 a fixed value of Ipeak-2P_unb per class as we did for Icon-2P_unb in addition to the flexibility introduced by using equations 33-9 and 33-10 as function of Rch. See proposal in next page.

<u>Group to select between the following options.</u> Option 1: Add to table 33-17 new parameter for Ipeak-2P_unb prior to item 12 ILIM-2P.

#	Parameter	Symbol	Units	Min	Max	PSE Type	Additional Information				
	Pairset peak current including unbalance effect										
11a	Class 5	Ipeak- 2P_unb	A	TBD		3	See 33.2.8.4.				
	Class 6			TBD		3					
	Class 7.			TBD		4					
	Class 8			TBD		4					

Option 2:

To add the following text to 33.2.8.4:

Ipeak-2P_unb can be derived from ILIM-2P at worst case condition according to equation 33-TBD.

$$I_{peak-2P_UNB} = \{I_{LIM-2P} - 0.002\}_{A}$$

Equation 33-TBD

Where

Ipeak-2P_unb is the peak current per pairset including unbalance effect.

ILIM-2P is the minimum output current per pairset under short condition as specified in Table 33-17.