Peak-2P-unb v100

Lennart Yseboodt, Matthias Wendt Philips Lighting – Research March 10, 2017

Introduction

This presentation deals with the specification of $I_{Peak-2P-unb}$. There are two important parameters that deal with unbalance: $I_{Con-2P-unb}$ and $I_{Peak-2P-unb}$. This parameter is used both for PD and PSE specifications, and is used in different context.

- ► I_{Con-2P-unb}
 - PSE The **minimum** amount of unbalance current on a pairset the PSE must be able to deliver continuously. Also, the **maximum** amount of current the PSE may cause to flow when exposed to the worst-case unbalance channel+PD combination.
 - PD The **maximum** amount of current a PD may cause to flow on a pair when connected to a worst case PSE+channel combination.

IPeak-2P-unb

- PSE See $I_{Con-2P-unb}$, but for peak current up to T_{CUT-2P} min.
- PD See $I_{Con-2P-unb}$, but for peak current up to T_{CUT-2P} min.

 $I_{Con-2P-unb}$ depends on P_{Class_PD} , the assigned Class by the PSE. Other than that it is a fixed number, determined by a worst-case unbalance model.

			l					
5	Pairset current including unbalance effect per the assigned Class, when powering single-signature PDs							
	Class 0 to 4	I _{Con-2P-unb}	А	I _{Con} ^a		3,4	See 145.2.8.5 and	
	Class 5			0.55		3,4	145.2.8.5.1.	
	Class 6			0.682		3,4		
	Class 7			0.781		4	1	
	Class 8			0.932		4		

IPeak-2P-unb

$I_{Peak-2P-unb}$ on the other hand depends on $V_{PSE},\,P_{Class_PD},\,I_{Peak},\,R_{Chan},$ and a curve fit parameter $K_{I_{Peak}},$ which in turn depends on P_{Class_PD} and $R_{Chan-2P}.$

I_{Peak}, defined in Equation (145–11), is the total current of the powered pairs with the same polarity that a PSE supports, when powering a PD over 2-pairs or powering a single-signature PD over 4-pairs.

$$I_{\text{peak}} = \left\{ \frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}} - 4 \times R_{\text{Chan}} \times P_{\text{peak}} \text{ pp}}}{2 \times R_{\text{Chan}}} \right\}_{\text{A}}$$
(145–11

where

V_{PSE}	is the voltage at the PSE PI as defined in 145.1.3
R _{Chan}	is the channel loop resistance as defined in 145.1.3
P _{Peak PD}	is the total peak power a PD may draw for its Class; see Table 145-28

IPeak-2P-unb, defined in Equation (145-12), is the minimum current due to unbalance effects that a PSE supports on a pairset when powering a single-signature PD over 4-pairs.

$$I_{\text{Peak-2P}_\text{unb}} = \left\{ (1 + K_{\text{IPeak}}) \times \frac{I_{\text{Peak}}}{2} \right\}_{\text{A}}$$
(145–12)

where

K _{IPeak}	The value of K _{IPeak} , defined in Equation (145-13), is based on a curve fit and is
	dimensionless
Peak	is the total peak current a PSE supports per Equation (145-11)

I_{Peak-2P-unb} (more)

$$K_{\text{Ipeak}} = \begin{cases} 1 & \text{for Class 0 to 4} \\ \min(0.214 \times (R_{\text{chan-2p}})^{-0.363}, 0.331) & \text{for Class 5} \\ \min(0.199 \times (R_{\text{chan-2p}})^{-0.35}, 0.304) & \text{for Class 6} \\ \min(0.18 \times (R_{\text{chan-2p}})^{-0.335}, 0.27) & \text{for Class 7} \\ \min(0.176 \times (R_{\text{chan-2p}})^{-0.347}, 0.26) & \text{for Class 8} \end{cases}$$

where

R_{Chan-2P}

is the channel DC loop resistance per pairset, as defined in 145.1.3. $R_{Chan-2P}$ has a minimum value of 0.2 Ω when used in Equation (145–13).

DHIIDS

Alternatively, an over-margined value of $I_{Peak-2P-unb}, I_{Peak-2P-unb_max},$ defined in Equation (145–14) may be used.

$$I_{\text{Peak-2P unb max}} = \{I_{\text{LIM-2P}} - 0.002\}_{\text{A}}$$
(145–14)

where

I_{LIM-2P} is the I_{LIM-2P} min value per pairset for the PSE, as defined in Table 145–16

$I_{Peak\text{-}2P\text{-}unb_max}$ is a shorthand to derive the worst case $I_{Peak\text{-}2P\text{-}unb}$ from $I_{LIM\text{-}2P}.$

Importance of I_{Con-2P-unb} and I_{Peak-2P-unb}

Apart from their importance is specification parameter, these two numbers determine for large part implementation cost as well. All current carrying components will need to remain fully operational under $I_{Con-2P-unb}$ continuously, and for a duty cycle of 5% under $I_{Peak-2P-unb}$ as well.

These unbalance parameters do not impact power budgeting, which is determined solely by the total power levels I_{Con} and I_{Peak}.

Unbalance & power budgeting

As can be seen, the unbalance parameter does not have influence on power budgeting.

The issue

The determination of $I_{Peak-2P-unb}$ is very complex and depends in a highly non-linear fashion on R_{Chan} and V_{PSE} . This may allow optimization, however:

- 1. Due to complexity there is a high risk of bad implementation/confusion leading to interoperability issues
- As the next slides will show, I_{Peak-2P-unb} can be **lower** than I_{Con-2P-unb}. Obviously then I_{Con-2P-unb} 'clips' the value of I_{Peak-2P-unb}.
- 3. As we now will use $I_{Peak-2P-unb}$ as a PD requirement, we face the issue that the PD cannot know the value of $I_{Peak-2P-unb}$ if it depends on V_{PSE} and R_{Chan} .

The next slides show plots of I_{Peak-2P-unb} versus V_{PSE} and R_{Chan}.

Class 6

Class 6, taking $I_{Con-2P-unb}$ into account

IPeak-2P-unb for Class 6

Class 8

11 March 10, 2017 Philips Lighting – Research

Class 8, taking $I_{Con-2P-unb}$ into account

IPeak-2P-unb for Class 8

PHILIPS

12 March 10, 2017 Philips Lighting - Research

Class 6, V_{PSE} only

13 March 10, 2017 Philips Lighting - Research

Class 8, V_{PSE} only

14 March 10, 2017 Philips Lighting - Research

Summary

The maximum effective possible gain achievable by using the set of equations is modest:

Class	Max gain	V _{Port_PSE-2P} min		
Class 5	10 mA	51 V		
Class 6	18 mA	51.5 V		
Class 7	50 mA	54 V		
Class 8	60 mA	54 V		

Max gain is the largest achievable difference between $I_{Peak-2P-unb}$ and $I_{Peak-2P-unb_max}$.

 $I_{Peak-2P-unb}$ in its current state is unusable for PD requirements. The possible gain of using the optimized version versus the worst case version ($I_{LIM-2P}-2mA$) is small.

Class 5

17 March 10, 2017 Philips Lighting – Research

Class 6

18 March 10, 2017 Philips Lighting - Research

Class 7

19 March 10, 2017 Philips Lighting – Research

Class 8

20 March 10, 2017 Philips Lighting - Research

Class 5, taking $I_{Con-2P-unb}$ into account

IPeak-2P-unb/CLIP for Class 5

PHILIPS

21 March 10, 2017 Philips Lighting – Research

Class 6, taking $I_{Con-2P-unb}$ into account

IPeak-2P-unb for Class 6

22 March 10, 2017 Philips Lighting – Research

Class 7, taking $I_{Con-2P-unb}$ into account

IPeak-2P-unb for Class 7

23 March 10, 2017 Philips Lighting – Research

Class 8, taking $I_{Con-2P-unb}$ into account

IPeak-2P-unb for Class 8

24 March 10, 2017 Philips Lighting – Research

Class 5, V_{PSE} only

25 March 10, 2017 Philips Lighting - Research

Class 6, V_{PSE} only

26 March 10, 2017 Philips Lighting - Research

Class 7, V_{PSE} only

27 March 10, 2017 Philips Lighting - Research

Class 8, V_{PSE} only

28 March 10, 2017 Philips Lighting - Research