Base Line Text for IEEE 802.3BT

IEEE802.3bt – May 2014 Interim

Koussalya Balasubramanian, Cisco Systems Inc.,

David Abramson, Texas Instruments

Supporters

Valerie Maguire – Siemon

Yair Darshan – Microsemi

Gaoling Zhou – Maxim Integrated

Christian Beia - STMicro

Rick Frosch – Phihong

George Zimmerman – CME Consulting

Sesha Panguluri – Broadcom

Dave Dwelley – Linear Technology

Fred Schindler – Seen Simply

Ron Nordin – Panduit

David Tremblay – HP

Lennart Yseboodt – Philips

Matthias Wendt - Philips

Motivation

To define some basic terminology and text markup for the standard

Terminology used in Current Standard

- The word "Type" associates with the following parameters
 - Class or Category of cabling needed for operation
 - Classification Details and supported/requested Power Levels
- The same thought process is extended for IEEE 802.3bt with the inclusion of the "new MPS"

New Maintain Power Signature(MPS) – requirement to reduce power consumption while PD is in a mode where it is only sending MPS.

Suggested Terminology

- A) Type 1,2 2Pair operation will be as per "AT" → Already in the Standard May operate as 4Pair with old MPS
- B) Type 3–4-Pair operation, 0-60W¹, new MPS
 - Can use existing Type 2 cable definitions
- C) Type 4 4-pair operation, $0 <100W^1$, new MPS
 - New cable definition needed (cable type, bundle size etc.,)
- ¹ Mentioned power levels are at the PSE PI

Within Type 3 and Type 4, ways to <u>identify more granular power levels</u> should be available. For instance a Type 3 PD and PSE should be able to agree on 15W, 30W or 60W. This is a <u>must</u> to allow 4-pair 15W or 4-pair 30W only systems in the field which will cover wider market need in a better way, rather than forcing all 4-pair PSE to be 60W or 100W capable.

Higher Level Details

This presentation covers only higher level details.

- 10GBase-T inclusion
- Per 2-pair detection, monitoring and protection on the PSE.

More in-depth parameters etc., needs to be worked out.

Section 33.1.1 - Objectives

Compatibility—Clause 33 utilizes the MDIs of 10BASE-T, 100BASE-TX, and 1000BASE-T and 10GBASE-T without modification. Type 1 operation adds no significant requirements to the cabling. Type 2 and Type 3 operation requires ISO/IEC 11801:1995 Class D or better cabling and a derating of the cabling maximum ambient operating temperature. The clause does not address the operation of 10GBASE-T. For 10GBASE-T operation, the channel model specified in Clause 55 needs to be met without regard to DTE Power via MDI presence or operation

NOTE: Once we know the cable details for Type 4 we can add that as well.

Section 33.1.4 – System Parameters

Parameter	Symbol	Units	Type 1 value	Type 2, or Type 3	Additional information
Nominal highest DC current per pair	I _{Cable}	A	0.350	0.600 ^b	See Section that covers inter-pair unbalance
Channel maximum DC pair loop resistance	R _{Ch}	Ω	20.0	12.5	
Minimum cable type			UTP per 14.4 and 14.5 ^a	Class D	See 33.1.4.1, 33.1.4.2

^a Class D recommended

bln Type 3, 60W operation, the current per 2-pair might be impacted by pair to pair system resistance unbalance. See details in <section that covers pair to pair unbalance>

For Type 1 and Type 2 systems, Two twisted pairs are required to source ICable—one carrying (+ ICable) and one carrying (– ICable), from the perspective of the PI. All 4 twisted pairs, connected from PSE PI to PD PI are required for Type 3 and Type 4 operation.

Section 33.1.4.1 Cabling Requirements

- "Type 2 and Type 3 operation requires Class D, or better, cabling as specified in ISO/IEC 11801:1995"
- Under worst-case conditions, Type 2 and Type 3 operation requires a 10 °C reduction in the maximum ambient operating temperature of the cable when all cable pairs are energized at ICable (see Table 33–1).

NOTE: Type 4 needs to be added once we have cable parameters for that.

Section 33.1.4.2 Channel Requirement

- Type 1, and Type 2, Any Type operation requires that the channel pair resistance unbalance shall be 3% or less. Pair Resistance unbalance is a measure of the difference between the two conductors of a twisted pair in the 100 Ω balanced.
- Operation over all 4 twisted pairs requires that the channel pair to pair resistance unbalance shall be x%(TBD) or less. Pair to pair resistance unbalance is a measure of the difference between the equivalent pair resistance of one of the pairs in the cable to any other pair's equivalent resistance.

NOTE: This can be appended with more information coming out of the End to End Cable Resistance ad-hoc

Section 33.2.3 Pin Assignments

 A PSE shall implement Alternative A, Alternative B, or both. While a
PSE may be capable of both Alternative A and Alternative B, PSEs
shall not operate both Alternative A and Alternative B on the same
link segment simultaneously.

Section 33.3.1 PD PI

 The PD shall be capable of accepting power on either or both of two sets of PI conductors.

 NOTE—PDs that implement only Mode A or Mode B are specifically not allowed by this standard. PDs that simultaneously require power from both Mode A and Mode B are specifically not allowed by this standard.

Thank You

Straw Polls

<adopt slide x>