IEEE802.3bt 4 Pair PoE Cost Comparison Redux H. Stewart – Linear Technology

Goal of this Presentation

 Respond to March 2014 Cost Comparison presentation

"Markup" Approach

- Again, thanks to the team who put together the March 2014 Cost presentation
 - <u>http://www.ieee802.org/3/bt/public/mar14/bal</u> <u>asubramanian_02_0314.pdf</u>
- Built these slides on top of March 2014 Cost presentation
 - Allows audience to compare approaches
 - Redlines used to call out differences
 - My hope is that this approach allows audience to view both sets of data without coloring data

PSE Breakout: 24-port 4PPOE Switch Example

- Costs impacted by the choice of 2-Power Channel vs. 1-Power Channel architectures will be explored using a <u>24 Port Switch Use Case</u>
- The multipliers are compared to a 30W IEEE 802.3-AT base case The multipliers are an estimate since actual prices and volumes vary
- The analysis includes components whose cost vary between the 2 implementations Common components like Power Supply etc., are not included

PSE Breakout: Controller IC Cost Impact External FET Solution

TECHNOLOGY

PSE Breakout: Controller IC Cost Impact External FET Solution

- 1 Power Channel must support high accuracy ADC
 - 2x dynamic range/Higher SNR results in silicon cost increase
 - A larger dynamic range puts more stress on analog circuit design to meet accuracy requirements.
 - Could also require more complex digital circuitry.
 - Makes it more difficult to implement on low-cost mixed signal process¹.
- 2-Power Channel
 - Requires two "AT" chip ports per RJ45

New 2 sense

architecture

PSE Breakout: Controller IC Cost Impact Internal FET Solution

	Cost Increase	e over 30W AT	Delta Between 1- and 2- Power Channel	
Solution	2-Power Channel	1-Power Channel		
Integrated FET	2x	1.8x	-10%	

1 Power Channel

Silicon Area Increase

PoE Controller

- Major contributing factor for this size increase is the FET
 - Required to keep total power dissipation at acceptable level and match power losses
- 2 Power Channel
 - Requires two "AT" ports per RJ45

PSE Breakout: Port TVS/Rsense Components Cost Impact

		Cost Increase	e over 30W AT	
	Component	2-Power Channel	1-Power Channel	Delta between 1- and 2- power channel
	TVS	2x	2x	0% -50%
	Rsense	2x	2x 31	0% +50%

- <u>TVS</u>: 2-power channel case requires 1 TVS per 2-pair.
- <u>Rsense</u>: Assumes same sense resistor value (for current measurement accuracy during DC-Disconnect for existing "AT" PDs

External **PSE Breakout: Port FET Component** Cost Impact

1-Power

Channel

1.5x

- 1.25x FET Choice is controlled by two considerations •
 - Thermal Dissipation during normal operation ٠
 - SOA (Safe Operating Area)
- Same power dissipation for 2 Power Channel and 1 Power channel • assumed

Delta between 1- and

2-power channel

-25%

-40%

PSE Breakout: Magnetics/Jack Cost Impact

Cost Increas	e over 30W AT				
2-Power Channel	1-Power Channel	Delta between 1- and 2- power channel			
1.15x ² 1	.15x _{1,35} x ^{1,2}	0% 27%			
1.2 – See "Magnetics Cost Increase Notes" in backup slides for more information.					

PSE Breakout: PCB Cost Impact

Cost Increase over 30W AT			
2-Power 1-Power Channel Channel		Delta between 1- and 2- power channel	
1x	1x 1.2x	0% +28%	

Thermal Dissipation needs drive increased cost

- Using the 1-power channel approach instead of the 2-power channel approach introduces additional dissipation

- For a group of 34 ports operating at high power (60W PSE output):
 - 1-Power channel has 2X dissipation empared to 2-Power channel
 - Since the Rseuse Ovice is same between 2-Powe

Nultiple GND planes, thicker copper (ex: 2 our

- Larger board anales Gasaed for same number.
- Maximum number of high power ports per unit

PSE Stem Comparison: Component Cost Weighting

Not all components contribute equally towards system cost

Contribution in a typical base system of 2Pair 30W is shown

· These percentages were taken from a variety of sources and vendors; thus ranges are given for each component

Component	Contribution in 30W 2-Pair External FET solution	Contribution in 30W 2-Pair Internal FET Solution
Sense	1-2%	NA
FET	7-9%	NA
TVS diode	1-2%	1-2%
Controller	13-16%	20-25%
PCB	13-16%	15-17%
Magjack	60-66%	64-68%

 The minimum of the component contributions are used along with the multipliers shown in slides 8-13 to arrive at the total system comparison between 1-power and 2-power channel

PSE Breakout: Cost Comparison Summary External FET Solution

 Taking into consideration the weighting of the various components, the data shows that when building a 60W system using external FETs: 17% more costly

The 2-Power Channel architecture is approximately 2% less costly than the 1-Power Channel architecture.

 $\Delta = 1 - 1 + Dual Power Channel Cost Increase/1 + Single Power Channel Cost Increase = 1 - 1 + 0.34/1 + 0.37 = 0.02$

		Dual Power Channel		Single Power Channel	
Component	Weighting	Increase	Effective	Increase	Effective
		over AT*	Contribution	over AT*	Contribution
Magjack	61.0%	15.0%	9.15% 1	5% <u>35.0%</u> 9.	.15% <u>21.35%</u>
PCB	14.0%	0.0%	0.00% 0	% 20.0%	0% 2.80%
PoE Controller	14.0%	100.0%	14.00% 20	0%40.0% 2	.8% 5.60%
FET	8.0%	100.0%	8.00% 2	5% 50.0%	2% 400%
Sense Resistor	1.5%	100.0%	1.50% 10	0%200.0% 1	.5% <u>3 00%</u>
TVS Diode	1.5%	100.0%	1.50% 10	0%08% 1	.5% 0.00%
Total Cost Increase			34.15%	16.	95% <u>36.75</u> %

* Cost increase indicated is for a 60W system compared to a 30W AT system.

PSE Breakout: Cost Comparison Summary Internal FET Solution

 Taking into consideration the weighting of the various components, the data shows that when building a 60W system using external FETs:
the same cost as the

The 2-Power Channel architecture is approximately 7% less costly than the 1-Power Channel architecture.

 $\Delta = 1 - 1 + Dual Power Channel Cost Increase / 1 + Single Power Channel Cost Increase = 1 - 1 + 0.31 / 1 + 0.41 = 0.07$

		Dual Pov	wer Channel	Single Power Channel	
Component	Weighting	Increase	Effective Contribution	Increase	Effective Contribution
Magjack	64.0%	15.0%	9.60% 1	5%35.0% 9	.15%22.40%
PCB	15.0%	0.0%	0.00%	0% 20 %	0% 3.00%
PoE Controller	20.0%	100.0%	20.00% 10	0%0%	.5%16.00%
TVS Diode	1.0%	100.0%	1.00% 10	0%0.0%	.5% 0.00%
Total Cost Increase			30.60%	30	.60% <u>41.40%</u>

* Cost increase indicated is for a 60W system compared to a 30W AT system.

60W vs 100W PSE Thought Experiment

- LPS limits PSE output power to 100W
- At V_{PSE_MAX} = 57V, I_{100W_MAX} = 1.75A
 - Derate this number by 10% to account for CUT accuracy and LPS margin
 - 100W Power per pairset is 1.575/2 = 788mA
 - 60W Power per pairset is 600mA
- For a given FET and Rsense technology an IC supports a limited power density
 - 100W Power per pairset is $I^2R = 0.788^2 \times R = 0.62R$
 - 60W Power per pairset is $I^2R = 0.6^2 \times R = 0.36R$

60W vs 100W Thought Experiment Cont'd

 Internal FET PSE architectures are limited by their ability to avoid generating and/or safely dissipating heat

IC Max Power = 2.88R

IC Max Power = 4.96R

IC Max Power = 2.48R

Conclusions

- Based on revised Single Power Channel architecture
 - External FET 1-Power Channel has a 17% cost advantage over 2-Power Channel architecture
- External FET 1-Power Channel architectures have an intrinsic advantage above 51W
 - Modern FET technologies aggressively reduce Θ_{JC}
 - FET technology will remain cheaper / R_{DSON}

Appendix

Critique

- March 2014 Cost presentation was based on the following premise:
 - The analysis includes components whose cost vary between the 2 implementations Common components like Power Supply etc., are not included
- · Which resulted in the following weighting

Critique Cont'd

- Carrying this premise forward would result in only the Controller and FETs as comparison points
 - These are the components whose costs vary
- The result is the following:

			Dual Powe	er Channel	Single Pow	ver Channel
	Old Weight	New Weight	Increase over AT	Effective Contribution	Increase over AT	Effective Contribution
FET	7%	32.6%	100%	32.6%	25%	8.1%
Controller	14.50%	67.4%	100%	67.4%	20%	13.5%
Total				100.0%		21.6%

* Cost increase indicated is for a 60W system compared to a 30W AT system.

