Extending Power via MDI for IEEE 802.3BT Baseline part-2

Fred Schindler, Seen Simply

Supporters: Lennart Yseboodt, Philips; Yair Darshan, Microsemi; Matthias Wendt, Philips;
David Tremblay, HP; Christian Beia, ST; Faisal Ahmad, Akros Silicon;
v4

Purpose

To add the ability to assign unused channel power.
$P_{\text {unch }}=P_{\text {class }}-P_{c h}-P_{P D}$

The PSE owns $\mathrm{P}_{\text {unch }}$.

The $P_{\text {unch }}$ value is determined by this proposal. $P_{P D}$ is the power the $P D$ is drawing.

What is new?

Class 6 or 8 PDs may request up to $P_{\text {Class }}$ from the PSE using LLDP.
$P_{\text {unch }}=0$ by default for Class 6 or 8 PDs when LLDP is not used.

Clause 33.2.6

Table 33-7—Physical Layer power classifications ($P_{\text {Class }}$)

Class	$\frac{\text { Number of Classification }}{\text { Events }}$	Minimum power levels at output of PSE ($P_{\text {Class }}$)
0	1	15.4 Watts
1	1	4.00 Watts
2	1	7.00 Watts
3	1	15.4 Watts
4	$\underline{2}$	30 W or $\mathrm{P}_{\text {Type }}$ as defined in Table 33-11 whichever is less
$\underline{5}$	4	45 W or $\mathrm{P}_{\text {Type }}$ as defined in Table 33-11 whichever is less
$\underline{6}$	4	60 W or $\mathrm{P}_{\text {Twe }}$ as defined in Table 33-1t whichever is less
1	$\underline{5}$	75 W or $\mathrm{P}_{\text {Type }}$ as defined in Table 33-11 whichever is less
$\underline{8}$	$\underline{5}$	$\mathrm{P}_{\text {Tvpe }}$ as defined in Table 3 3 年 11
NOTE 1 - This is the minimum power at the PSE PI. For maximum power available to PDs, see Table 33-18. NOTE 2-Data Link Layer classification takes precedence over Physical Layer classification.		

No change is required because PSEs already provides Pclass.

Clause 33.3.7.2/5

33.3.7.2

For Class 6 or Class 8 PDs, the input guaranteed available average power is the maximum power the PD shall consume when no additional information is available to the PD regarding actual channel DC resistance. If such a PD has additional information and does not cause the PSE to source more than $\mathrm{P}_{\text {Class }}$ it may exceed the maximum input guaranteed average power.

33.3.7.5

Under normal operating conditions when there are no transients applied at the PD PI, Class 6 or Class 8 PDs. shall operate below the PD extended template defined in Figure 33-18. PDs of all other classes the PD shall operate below the PD upperbound template defined in Figure 33-18

No change is required because Class 6 or Class 8 PDs may already draw up to PSE Pclass.

Clause 33.6.3.2

```
PD_DLLMAX_VALUE
    This value is derived from pd_max power variable (33.3.3.3) described as follows
    pd_max_power PD_DLLMAXX_VALUE
        _max_power PD_DLLMA
            1 
                                130
                                255
                                TBD
                                TBD
                                TBD
                TBD
PD_INITIAL_VALUE
    This value is derived as follows from the pd_max_power (33.3.3.3) variable used in the PD state
    diagram (Figure 33-16)
    pd_max_power PD_INITIAL_VALUE
        0 \leq130
            \leq39
            \leq65
            \leq130
            <255
            TBD
            TBD
            TBD
            TBD
```

For class 6 and 8 PDs,
The PD_DLLMAX_VALUE equals the PSE-Pclass Table 33-7 value for the class used. The PD_INITIAL_VALUE needs to be less than or equal to the PSE-Pclass Table 33-7 value for the same class.

Clause 33.6.3.2, continued

For class 6 and 8 PSEs, The PSE_INITAL_VALUE is the PSE-Pclass Table 33-7 value for the same class.

Motion

Move to accept text from slide 6 to 7 of Schindler_3bt_02_0515.pdf as IEEE802.3bt text within clause 33.

Mover: Fred Schindler,
Seconder: ???
Y: $\mathrm{N}: \quad \mathrm{A}$:

Seen Simply

Turning complexity into understanding.

