Proposed Remedy for comment \# 28 clause 33.2.8.5page 109 line 20

1. To change Figure 33-26 to:

Figure 33-26 - linrush-2P and linrush current and timing limits, per pairset in POWER_UP state

2. To update equation 33-14 to fit new Figure 33-26.

Change the range of the $1^{\text {st }}$ line of the equation to: $t_{0}<t<\left(t_{0}+10.0 \times 10^{-6}\right)$
Change the range of the 2 nd line of the equation to: $\left(t_{0}+10.0 \times 10^{-6}\right)<t<\left(t_{0}+0.001\right)$
Change the equation of the 2nd line to: $a \times\left(t+t_{0}\right)+b$
Change the range of the $3^{\text {rd }}$ line of the equation to: $\left(t_{0}+0.001\right)<t<0.0075$
Add new range before the $1^{\text {st }}$ line with the following equation: Im for $0<t<t_{0}$
Add to the "where" list of parameters:
$t_{0} \quad$ Is the time when Iport-2P exceeds Iinrush-2P_max for the first time during POWER_UP.
$a=-\frac{(50-\mathrm{Im})}{99 \times 10^{-5}}$
$b=50-a \times\left(t_{0}+10^{-5}\right)$

```
End of Base Line
```

Note: I am expecting that the new equation above $a \times\left(t+t_{0}\right)+b$ and
$a=-\frac{(50-\mathrm{Im})}{99 \times 10^{-5}}$
$b=50-a \times\left(t_{0}+10^{-5}\right)$
Will be converged to the same equation in D1.7 i.e. $\operatorname{Im}+(50-\mathrm{Im})^{*}(0.001-\mathrm{t}) / 99^{*} 10^{\wedge}-5$.
Will be verified for D1.8.

