Hi Chad,

When this came up on the call yesterday, and after talking to you, I was certain that I had been round this loop before. I therefore had a look at my IEEE P802.3at comments, sure enough I have a number on this subject, one reads 'The objectives state that we will support ISO/IEC 11801-1995 Class D cabling. This cabling is specified with a maximum loop resistance of 40 Ohms [http://www.ieee802.org/3/at/public/nov06/3n807.pdf] although as stated in this liaison, a high proportion of the 1995 Class D channels are expected to meet the 25 Ohms. DC loop resistance.'.

Unfortunately the link to the liaison letter in the comment is incorrect, it should be to <<u>http://www.ieee802.org/3/minutes/nov06/1106_ISO_IEC_to_802_3_3n807.pdf</u>>. As you will see in that liaison letter it is stated that 'Class D 2002 DC loop resistance is 25 Ohm, and Class D 1995 was specified at 40 Ohm at 20 °C. Note: A high proportion of the 1995 Class D channels are expected to meet the 25 Ohm DC loop resistance.'. I seem to remember that 40 Ohm was used for ISO/IEC 11801:1995 Class D at the request of Germany, to permit cabling based on small gauge wire, however this was not prevalent, hence the note in the liaison letter.

I wasn't also able to find an excerpt of the DC loop resistance text from ISO/IEC 11801:1995 anywhere on the IEEE 802.3 website, but I was able to find a few examples of subclause 6.4.7 'Direct current (d.c) loop resistance' of ISO/IEC 11801:2002, the most recent seems to be <<u>http://www.ieee802.org/3/4PPOE/email/pdfjfoRJksOqW.pdf</u>>. In that you will see ISO/IEC 11801 Class C has a DC loop resistance of 40 Ohms, and ISO/IEC 11801:2002 Class D has a DC loop resistance of 25 Ohms.

In summary, based on the above, I believe that the values in ISO/IEC 11801 are as follows. Please note that the category designation under the heading 'TIA' is just for cross-reference, it is not to state that TIA specifies the same DC loop resistance for that category.

+			+ -		++
ISO/IEC 1	1801			DCLR	TIA
ISO/IEC 1	1801	Class	C	40 Ohms	Cat 3
ISO/IEC 1	1801:1995	Class	D	40 Ohms	Cat 5
ISO/IEC 1	1801:2002	Class	D +-	25 Ohms	Cat 5e ++

The 40 Ohms specification for ISO/IEC 11801 Class C seems to explains the use of 40 Ohms for IEEE 802.3af. And the 40 Ohms specification for ISO/IEC 11801:1995 Class D, along with the note in the liaison letter, seems to explain the statement in IEEE Std 802.3-2015 subclause 33.1.4.1 'Type 2 cabling requirement' that reads 'Type 2 operation requires Class D, or better, cabling as specified in ISO/IEC11801:1995 with the additional requirement that channel DC loop

resistance shall be 25 Ohms or less.'. it also explains the structure of IEEE P802.3at Objective 2 which reads 'The target infrastructure for PoEPlus will be ISO/IEC 11801-1995 Class D / ANSI/TIA/EIA-568.B-2 category 5 (or better) systems with a DC loop resistance no greater than 25 Ohms.'.

Now I note some IEEE P802.3bt presentations such as

<<u>http://www.ieee802.org/3/bt/public/may15/darshan_05_0515.pdf</u>> state that Class D (ISO/IEC 11801:1995) is 12.5 Ohm Rchan. I also note the IEEE P802.3bt objective that reads 'Support for operation over the following channels that have DC loop resistance of no greater than 25 ohms' and lists 'Class D or better media from ISO/IEC 11801:1995'. It appears that these may not be strictly correct, instead it is IEEE Std 802.3at subclause 33.1.4.1 that mandates an additional requirement for Type 2 operation of 25 Ohm DC loop resistance.

Best regards,

David

Objective:

Support for operation over the following channels that have DC loop resistance of no greater than 25 ohms:

- Class D or better 4-pair copper medium from ISO / IEC 11801:2002, including Amendments 1 & 2
- Class D or better media from ISO / IEC 11801:1995
- Category 5e or better cable and components as specified in ANSI/TIA-568-C.2
- Category 5 cable and components as specified in ANSI/TIA/ EIA-568-A

D2.4:

PSE Type	Nominal highest current per pair (I _{Cable} , A)	Number of powered pairs	Channel pairset maximum DC loop resistance (R _{Ch} , Ω)	Minimum cabling type
Type 3	0.6	2 or 4	12.5	Class D (ISO/IEC 11801:2002) or Category 5e (ANSI/EIA/TIA-568-B.2:2001)
Type 4	0.96	2 or 4	12.5	Class D (ISO/IEC 11801:2002) or Category 5e (ANSI/EIA/TIA-568-B.2:2001)

Table 145–1—System parameters

NOTE—The current per pairset may be impacted by pair-to-pair system resistance unbalance. See 145.2.8.5.1. For additional information on Type 4 current unbalance, see TIA TSB-184-A [Bx1] and ISO/IEC TS 29125.

Type 3 and Type 4 operation requires Class D or better cabling as specified in ISO/IEC 11801:2002. These requirements are also met by Category 5e or better cable and components as specified in ANSI/TIA-568-C.2.

802.3at:

Type 2 operation requires Class D, or better, cabling as specified in ISO/IEC 11801:1995 with the additional requirement that channel DC loop resistance shall be 25Ω or less. These requirements are also met by Category 5e or better cable and components as specified in ANSI/TIA/EIA-568-B.2, ANSI/TIA/EIA-568-B.2-1, and ANSI/TIA/EIA-568-B.2-10; or Category 5 cable and components as specified in ANSI/TIA/EIA-568-A-1995.

Will file a late comment to replace

"Type 3 and Type 4 operation requires Class D or better cabling as specified in ISO/IEC 11801:2002. These requirements are also met by Category 5e or better cable and components as specified in ANSI/TIA-568-C.2."

with: "Type 3 and Type 4 operation requires Class D, or better, cabling as specified in ISO/IEC 11801:1995 with the additional requirement that channel DC loop resistance shall be 25 Ω or less. These requirements are also met by Class D or better cabling as specified by ISO/IEC 11801:2002, Category 5e or better cable and components as specified in ANSI/TIA-568-C.2, or Category 5 cable and components as specified in ANSI/TIA-568-A-1995."